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Abstract. The article is concerned with the control problem synthesis for non-
linear systems using linear techniques.  The proposed approach consists on an 
approximation of a non-linear system by a set of uncertain linear systems. Con-
trol laws of these models are designed using classical methods. The first step in 
this approach is given by approximation of the non-linear system into a set of 
uncertain linear systems. The second step is the use of  robust control methods 
based on LMIs that assure local stability in a non-infinitesimal state space do-
main.  This last point permits to determinate the global control law. The global 
control law is based on gain scheduling form the measured state of the system. 
This approach is illustrated by a numerical example. 

Keywords. Non-linear systems, HL-CPWL, Robust Control, Uncertain system, 
Norm bounded uncertainties, Gain scheduling. 

1.   Introduction 

The use of non-linear systems in control has a long history especially in industries. 
This type of control has become an important domain of research which attracts many 
researchers. The application of this approach poses two problems : 

- How to transform the non-linear system with a whole of linear models. 
- How to guarantee the closed-loop global stability of the switched multiple 

linear system.  
In recent years, several techniques of non-linear approximation systems have ap-
peared; for example the high level canonical piecewise linear representation [8] [9]. 
The models obtained after this approximation are linear models. But these linear 
models do not make it possible to assure the transition of stability between two opera-
tional points. In this article, a solution for such problem is provided. In fact, we pro-
pose a new approach which transforms the certain linear models into a uncertain 
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linear models and assures at same time the global stability of this non-linear system. 
The main idea of the new transformation is to add to each linear model an elliptic 
uncertain domain defined by a norm bounded uncertainty.  
Then, we determine a control law of state feedback which guarantees stability in 
closed loop and ensures the transition between two points from operation. 
 
This article is organized as follows: Section II will point out the approximation of 
non-linear systems. Section III  will describe a non-linear control using the multi-
model approach. Finally in section IV, a numerical example of control the physical 
system will be developed in order to validate an approach which guarantee the stabil-
ity. 

2. Approximation of non-linear systems 

In this section, we give the definition of basic tools necessary to present the approxi-
mation of nonlinear systems by a family of the linear models. The high level canoni-
cal piecewise linear representation are the foundation of this multi-model approach. 

2.1.   Approximation of non-linearity 

In this subsection, the construction of the basis for PWL functions proposed in [8] is 
briefly recalled. The domain considered in [9] is a rectangular compact set (1) 

{ }:0 , 1 , 2 ,. . . ,nx I R x m i ni i iS σ∈ ≤ ≤ ==             (1) 

where iσ  is the grid size and  which is subdivided using a simpliciale boundary 
configuration (see [8] and [9]).  

m i
H

 

 
Fig1 : A simplicial Partition of a domain in IR2

The building block of the basis is a generating function as follows: 

( , ) .1 2 1 2 1 21 2 1 2x x x x x x x x xγ
⎛ ⎞ ⎛ ⎞

= − + − − +− + − + − − +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

x       (2) 

Using (2), the functions 0 1( ) , ( ) ( , ),1 1 1 1 1x x x x xγ γ γ= = 2 ( , ) ( , )1 2 1 2x x x xγ γ= .  
Generally is introduced 

 1( , , ..., ) ( , ( , .., ))1 2 1 2
k kx x x x x xkγ γ γ k

−=                                  (3) 
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A distinctive property of (3) is composed by  nestings of absolute value functions 
and accordingly it is said to have an n.l. equal to . 

k
k

The first element of the basis is a constant term  , and the others  follow  from a  

composition of  , , with  the  linear  functions : 

0 (1)γ

(., ..., .)kγ 1, 2, .....k = n

  . ( ) , 1, 2, .. , 0,1, .. 1, x x j k n j mk j k k k kk
π δ= − = = −

 
As a result, the basis can be expressed in a vector form, ordered according to the n.l., 
as 
                         [ , , ..., ],0, 1,

T T T T
n ss sΛ = Λ Λ Λ

where  is a vector containing theiΛ . .n l i= functions. 
 
Definition [9]: The HL-CPWL  are defined as follows, [ ]f PWL SH∈  can be written as 

                               ( ) ( )Tf x C x= Λ                                                  (4) 

Where and each vector is a parameter  vector  associated  

with the
0 1[ , , ..., ]T T T

n
TC C C C= iC

. .n l i= vector  function iΛ [when necessary, the jth  component of vec-

tor ( )xΛ will be simply referred to as ( )xjγ ].  

 
After these considerations we define , the approximation of a non-

linear  function

[ ]f PWL SH∈

g and it satisfies the following condition: 
( ) ( ),f v g v v Vsii i= ∀ ∈  

Let { }, ......,1 2V v v vm= be a set of   vectors m nvi ∈ℜ , for 1, 2, .....i m= . 

( ) ( )Tf x C x= Λ =

0( ) 0 0 0 0( ) . . . ( )1( ) 1. .
. .. . .

.. . . .

.. 0 ( ) . . . ( )( )

CT Tf V ns V Vs s Cf Vs

T Tn n nn V V Cs s nf Vs

Λ Λ

=

Λ Λ

⎡ ⎤ ⎡ ⎤⎡ ⎤⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥⎢⎢ ⎥ ⎥
⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦

        (5) 

 
The approximation of a non-linear function ( )g x  have the following form 

,with ,  and A an invertible and 

triangular square matrix. 

1C A B−= 0B=[ (V ),..., ( )]s
n Tf f Vs 0 1[ , , ..., ]T T T

n
TC C C C=

Let’s note that each nonlinear function with N-argument will be approximated  by  
linear equations having the following form. 
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1, 1 1 2, 2 2 ,
1

( ) [( ) ( ) .... ( )]
N

k k n k n
k

f x a x b a x b a x b
=

= + + + + + +∑ n        (6) 

with  represent respectively the argument number of the non-linearity and 
the number of linear model. 

n and N

  2.2 Determination of certain multi-model 

The state representation of each non-linear system is represented in the following 
form: 
 

                 { ( ) ( ) ( )
( ) ( )

x t A x t Bu t
y t C x t
= +

=

&
                                              (7) 

 
where  is the control vector. Au(t) m∈ ℜ n n×∈ ℜ the dynamic matrix and  
the control matrix. 

n mB ×∈ ℜ

 
One will suppose for the continuation that  the control matrix  is a constant matrix 
and that the non-linear function belongs to dynamic matrix A. The non-linear func-
tion “ ” is approximated by a whole of the linear functions. 

B

g
The state representation of the whole linear systems is as follows: 

. . 0. . 1,1 1,11 1
.. . . .

( ) ( ) ( ) ( ) ( ) . ( ). . . .1
...1,1 1,

( ) ( ) ( ) ( )

nn
N

x t x t Bu t x t x t
Bu ti

b bg a an i nn i
y t Cx t y t Cx t

∂ ∂∂ ∂

∑= + = +
= +=

+ +∂

= =

⎧ ⎡ ⎤⎛ ⎞⎧ ⎛ ⎞ ⎛ ⎞
⎪ ⎢ ⎥⎜ ⎟⎪ ⎜ ⎟ ⎜ ⎟
⎪ ⎢ ⎥⎜ ⎟⎪ ⎜ ⎟ ⎜ ⎟

⎨ ⎨ ⎢ ⎥⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟⎪ ⎪ ⎢ ⎥⎝ ⎠⎝ ⎠ ⎝ ⎠⎣ ⎦⎪ ⎪
⎩ ⎩

& &      (8) 

with n  represent respectively the argument number of the non-linearity and 
the number of linear model. For example N=1, the state representation is  

and N

1, 1 1,

1

1, 1,

. . 0
.. .

( ) ( ) . ( ). .

( ) ( )

n

N

i

n i

x t x t
B u t

ba i
y t C x t

=

∂ ∂

= +∑
+

∂

=

⎧ ⎡ ⎤⎛ ⎞ ⎛ ⎞
⎪ ⎢ ⎥⎜ ⎟ ⎜ ⎟
⎪ ⎢ ⎥⎜ ⎟ ⎜ ⎟⎪

⎢ ⎥⎜ ⎟⎨ ⎜ ⎟
⎜ ⎟⎢ ⎥⎜ ⎟⎪ ⎝ ⎠⎝ ⎠⎣ ⎦⎪

⎪⎩

&  

The state representation  of the linear system (6) is: 
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 ( ) ( ) ( )
( )

( ) ( )
x t A x t Bu ti i x t Xiy t C x t

β= + +
∀ ∈

=

⎧
⎨
⎩

                                   (9) 

With Xi  is the  variation domain of the state variables. 

        The equation (9) represent a problem at the level of the term iβ . For this reason 
we must eliminate this term, in order to relocate the state vector ( )x t  by a con-

stant 0x . 

Let’s suppose now that, we have a new state variable  where , 

, the new state representation is the following: 

( )z t ( ) ( ) 0z t x t x= −

( ) ( )z t x t= &&

   {                                         (10) ( ) ( ) ( )
( )

( ) ( )
z t A z t Bu t

z t Ziy t C z t
= +

∀ ∈
=

&

with Zi  the variation domain of the state variables 0X Xi i− . 

2.3 Constructions of uncertain multi-model 

The uncertainty used in this section is a norm bounded uncertainty. This type of un-
certainty is defined by an ellipse characterized by andi iα ρ : 

 
                               Fig2: Elliptic domain of uncertainty 

The state representation of the whole linear models while considering a norm 
bounded uncertainty is: 

 
 

( )

{ }

1,

. . 011 1
. . .

( ) ( )
( ). . .1

11
( ) ( )

.( ) : ( ) ( )

0 0 ...
N

i

n

z t z t F i i Bu ti
an

y t Cz t

d e TF F t F t F t I

α ρ

∂ ∂

∑= +
+=

∂

=

= ∈ℜ ≤

⎧ ⎡ ⎤⎛ ⎞ ⎛ ⎞⎪ ⎢ ⎥⎜ ⎟ ⎜ ⎟
⎪ ⎢ ⎥⎜ ⎟ ⎜ ⎟⎨ ⎢ ⎥⎜ ⎟ ⎜ ⎟⎜ ⎟⎪ ⎝ ⎠⎢ ⎥⎝ ⎠⎣ ⎦⎪
⎩

&

      (11) 
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3. State control for a linear systems: Multi-model approach 

In this section, we present the concept of stabilisability quadratic introduced by Holot 
and Barmish into [2], and its application onto the stabilization of the uncertain linear 
systems[10]  
We consider the following continue time system  

                       
                     

( ) ( ) ( ) ( )
( )

z t A A z t B u t
y C z t

= + ∆ +
=

⎧
⎨
⎩

&

               (12) 
Where  is the state, ( ) nz t ∈ℜ ( ) mu t ∈ ℜ is the control input and ( ) qy t ∈ ℜ is the 
measured output. Uncertainty A∆  of type norm bounded.   
 
                                       A D F E∆ =  (13) 
 
THEOREM 1: The system (12 and 13) is quadratically stabilizable by a state feedback 
control if and only there exist positive definite symmetric matrix ,  matrix 

 and 
1

n nW ×∈ℜ

2
m nW ×∈ℜ 0ε > such that : 

 

1 1 2 2 2 1 1 1 1

1 1

0
T T T T TAW W A BW W B D D W E

E W I

ε

ε

⎡ ⎤+ + + +
<⎢ ⎥

−⎢ ⎥⎣ ⎦
    (14) 

the state feedback gain is 1
2 1K W W −=  

 
Proof: See[4]. 

 
Now we present the algorithm of the multi model control , we are interested more 
particularly in research of a séquencée order ensuring a suitable transition between an 
initial and a final operation point. The problem is thus to find the control laws associ-
ated for each uncertainty domain. 
 
Algorithm 
 

- Approximate the non-linear function by a whole of the linear functions. 
- Determine the equations of each linear function   ( )f x

- Clarify  the equilibrium  points i
eqx  and  the final point fx .  

- Specify the variation  uncertain domain of each i
eqx .  

- Determine the local control law   by solving LMI (14) ( ) ( )iu t K x t=

- Repeat the step four until i
eqx is  equal fx  

- Construction the global control law by on gain scheduling form the local 
control law 
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An algorithm that joint in one hand a method to linearization of non-linear 
models and the other hand a method (multi-model approach) to build a feedback 
control law. The algorithm is shown in an example. 

4. NUMERICAL  EXAMPLE: 

The approach is illustrated by the mean of a physical system composed of two 
masses ( ) connected by a spring. The stiffness  of this spring affects norm 
bounded uncertainty. 

1 ,m m2 k

                                  1x                             2x  

                u                          k

    

    M1     M2

Fig3: Physical system 

The state representation of this system is given by [1]  

1 1

2 2

1 11 3
1

2 4
2 2

2

0 0 1 0
0

0 0 0 1
0

0 0 1

0 0 0

x x

k kx x
u

m mx x m
k kx x

m m

y x

⎡ ⎤
⎡ ⎤⎢ ⎥⎡ ⎤ ⎡ ⎤ ⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥− ⎢ ⎥= +⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥−⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎢ ⎥⎣ ⎦

=

&

&

&&

&&

                           (15) 

The values of the two masses  are supposed to be known and the stiffness 

 is characterized by a nonlinear equation g(x)= =

,1 2m m

k ( )k x ( 1)xe −  with  [0.5 4]x∀ ∈ .   
The last function g(x) is mono-argument (n=1) .  

The analytic expression  for the approximation of ( )f x ( )g x  is     

1, 1 1
1

( ) [( )]
N

k
k

f x a x b
=

= +∑  
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4.1 Construction the uncertain linear model   

 The non-linear function ( 1)( ) xg x e −=  with the domain is { }1 : 0.5 4S x x= ∈ℜ < ≤ . 

The approximation HL-CPWL of a non-linear function ( )g x  with four linear f
tions is represented by figure 4. 

unc-
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Fig4: HL-CPWL approximation of the nonlinear function with four linear functions 

The norm bounded  domain uncertainty of each model is represented by ellipses as 
we can see in the figure 5. 
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Fig5: Uncertainty elliptic domain 
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The new state representation of the nonlinear system is 

( )

[ ]

0 0 1 0 0
00 0 0 14 0

( ) ( ) 0 0 ( ) 00 0 11 ( ),1 ,1
10 0,1 ,1 0

( ) 0 1 0 0 ( )

1
z t F t z ti ia ai u ti i

a ai i

y t z t

α ρ∑= +−= +

−

=

⎧ ⎡ ⎤⎛ ⎞⎛ ⎞ ⎛ ⎞⎪ ⎢ ⎥⎜ ⎟⎜ ⎟ ⎡ ⎤⎜ ⎟⎪ ⎢ ⎥⎜ ⎟⎜ ⎟ ⎢ ⎥⎪ ⎜ ⎟⎨ ⎢ ⎥⎜ ⎟⎜ ⎟ ⎢ ⎥⎜ ⎟⎜ ⎟⎜ ⎟⎪ ⎢ ⎥⎝ ⎠ ⎢ ⎥⎝ ⎠⎝ ⎠⎣ ⎦ ⎣ ⎦⎪
⎪⎩

&  

 

 
,1ia  iα  iρ  

1 0.8784 0.6149 0.7 
2 1.7689 1.2382 0.41 
3 3.5620 2.4934 0.65 
4 7.1731 5.0212 0.71 

                                     Table 1: Simulation  Parameter 

4.2 State control for a linear systems 

The state feedback is based on the resolution of theorem1. The results of this resolu-
tion permit us to determine the  feedback gain values iK . The application of state 

feedback gain iK (table 2) for each uncertain linear model makes possible to ensure 

local stability in its elliptic domain defined by the ellipse iξ characterized by 

i ietα ρ . 
 

 
Equilibrium points:                                    iK  
1                  [-7.0113  -13.4945  -10.8850  -5.2338] 
2                  [-6.5185  -23.2645   -7.4706   -6.0612] 
3                  [-7.0511  -32.5182   -4.9178   -7.1140] 
4                  [-8.4611  -37.4582   -4.4199   -5.9828] 
 

Table2: State feedback gains 

Using a gain scheduling one can now apply a law of global control. We fix , for ex-
ample,  like an initial condition  and a final state 

.  The  curves (6) show the evolution of the state vari-
ables and illustrate the convergence of the trajectory which always evolves inside the 
ellipses of stability. It is clear that the stability is guaranteed thanks to the existence of 
two successive equilibrium points in the same area of stability. 

(0) [ 1, 0, 0 , 0]Tx = −

( ) [3.1, 3.15, 4.15,1.85]Tx ∞ =
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Fig6: Variation of state variables 

Figure (7) illustrates the evolution of the control signal. For the latter, there are dis-
continuities at the instants of commutation, the amplitude of these discontinuities falls 
with the number of the correctors. One can think to define a continuous global law. 
The feedback  K(t) gain is obtained by polynomial interpolation between  the 4 con-
trollers calculated previously. 
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Fig7 : Gain scheduling control  
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5. Conclusion 

The principal contribution of this article is to prove that one can use a methodology of 
the order multi-model to guarantee stability in a closed loop of a non-linear system. 
For the class of globally locally controllable non-linear systems, a numerical proce-
dure has been presented which insure a convergent and thus stable transition from 
any initial stead state equilibrium to a final one. Of course, that can be achieved at the 
expense of high numeric computation in the case when the number of intermediate 
points is high which may be the case when the parameterσ  has to be chosen very 
small. That can occur for highly non-linear systems when the local uncertainty has to 
be locally embed the non linearities. 
However, when the system is locally controllable there always exists a non null state 
domain where the uncertain linear system, concerning the non-linear one, is state 
stablizable. 
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