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Abstract. This paper presents a method to design Sliding Mode Observers 
(SMO) for a class of linear system using Linear Matrix Inequalities (LMIs). 
The switching surface is set to be the difference between the observer and 
system output. In terms of LMIs, a necessary and sufficient condition is 
derived for the existence of a sliding-mode observer guaranteeing a stable 
sliding motion on the switching surface. The gain matrices of the sliding-mode 
observer are characterised using the solution of the LMI existence condition. 
Next, we discuss how these SMO can be used for detecting and reconstructing 
actuator and sensor faults by analysing the equivalent output error injection 
signal required to maintain the observer in a sliding motion. Finally, the 
validity and the applicability of this approach are illustrated by a lateral axis 
model of an L-1011in cruise flight conditions. 

Keywords: Observer; Sliding mode; LMI; Equivalent output error injection; 
                   Fault reconstruction.     

1.   Introduction 

The fundamental purpose of Fault Detection and Isolation (FDI) scheme is to 
generate an alarm when a fault occurs and also to identify the nature and location of 
the fault. Many FDI methods are observer based: the basic idea is to reconstruct the 
outputs of the system of interest from the measurements, and use the estimation 
error as the residual. The observer feedback gain enters the calculation of the 
residual generator and the gain design problem provides freedom for achieving the 
required performance. However, the model of the system about which the observer 
is designed will possess uncertainties. These uncertainties could cause the FDI 
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scheme to trigger a false alarm when there are no faults, or even worse, mask the 
effect of a fault. Hence, there is a need for robust FDI schemes using sliding mode 
observers [7, 8 and 9]. 

 The concept of sliding mode emerged from the Soviet Union in the late sixties 
where the effects of introducing discontinuous control action into dynamical systems 
were explored. By the use of a judicious switched control law, it was found that the 
system states could be forced to reach and subsequently remain on a pre-defined 
surface in the state space. Whilst constrained to this surface, the resulting reduced-
order motion – referred to as the sliding motion – was shown to be insensitive to any 
uncertainty or external disturbance signals which were implicit in the input of the 
system. This inherent robustness property has resulted in world wide interest and 
research in the area of sliding mode control. These ideas have subsequently been 
employed in other situations including the problem of state estimation via an 
observer. 

Several authors have proposed sliding mode observer design methods [1-5]. Utkin 
[1] presents a discontinuous observer strategy whereby the error between the 
estimated and measured outputs is forced to exhibit a sliding mode and measurement 
noise effects are reduced. Dorling and Zinober [2] explore the practical application 
of this observer to an uncertain system and report difficulties in the selection of an 
appropriate switched gain that will cause the system to exhibit a sliding mode 
without excessive chattering. It should be noted that this study did not consider the 
application of a continuous approximation to the discontinuous observer action as 
traditionally used in the implementation of variable structure control systems.  
Walcott and Zak [3] use a Lyapunov-based approach to formulate an observer 
design which, under appropriate assumptions, exhibits asymptotic state error decay 
in the presence of bounded non-linearities/uncertainties. In particular, this method 
seeks to render the observer error system totally insensitive to matched uncertainty. 
This framework, although intuitively appealing, necessitates the use of algebraic 
manipulation tools to solve the associated constrained Lyapunov problem effectively 
for systems of reasonable order. Edwards and Spurgeon [4] propose an observer 
strategy, similar in style to that of Walcott and Zak, which circumvents the use of a 
symbolic manipulation and offers an explicit design algorithm. This paper builds on 
the work of Tan and Edwards [5] by considering an LMI-based sliding-mode 
observer design method. This approach does require not only of finding state 
transformation matrices but also changing coordinates to obtain the canonical form. 
Using LMIs a necessary and sufficient condition is derived for the existence of a 
sliding-mode observer guaranteeing a stable sliding motion on the switching surface 
that is set to be the difference between the observer and system output. In terms of 
the solution of the LMI existence condition, explicit formulas of the gain matrices of 
the sliding-mode observer are derived. Because the approach is based on LMIs, it 
offers degrees of freedom which can be used to improve the design [6].  

Despite SMO's excellent ability to generate unbiased estimates of the system states 
under modeling errors, relatively few researchers have investigated the area of fault 
diagnosis using SMO: Sreedhar, Fernandez and Masada [7] consider a model-based 
sliding mode observer approach although in their design procedure it is assumed that 
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the states of the system are available; a different approach is adopted by Hermans 
and Zarrop [8], who attempt to design an observer in such a way that in the presence 
of a fault the sliding motion is destroyed. In this paper, the observer is designed to 
maintain a sliding motion even in the presence of faults which are detected by 
analysing the so-called equivalent output injection. The manipulation of the 
equivalent output injection signal can be used for explicitly reconstructing fault 
signals. This may be allied to the equivalent control signal which appears in the 
analysis of sliding mode based feedback control systems [14]. 

The structure of the paper is as follows: Firstly the preliminaries and background 
work for this paper will be presented. Next, the sliding mode observer and its design 
method will be introduced. Following that, a method to reconstruct actuator and 
sensor faults will be described. Finally, the efficacy of this method will be 
demonstrated with a lateral axis model of an L-1011 in cruise flight conditions taken 
from the literature. 

2.    System description  

Consider the nominal linear system subject to certain faults described by  

a

s

x( t ) A x( t ) Bu( t ) F f ( t )
y( t ) C x( t ) f ( t )

= + +

= +

&
  

(1) 

(2) 

where nx∈R , mu∈R  and py∈R  are the state variable, the input and the output 

respectively, the matrices n nA ×∈R  , n mB ×∈R , p nC ×∈R , n qF ×∈R  are 
assumed to be time invariant, and q p n≤ < . Assume that the matrices C and F are 
full rank. The functions af ( t )  and sf ( t )  are deemed to represent actuator and 

sensor faults respectively, and the signal : q
a mf + × →R R R  is assumed to be 

unknown but bounded so that  

≤af ( t ) β   (3) 

where the positive scalar β is known. The objective is to design an observer to 
generate a state estimate x̂( t )  and output estimate ŷ( t )  such that a sliding mode is 
attained in which the output error 

y ˆe ( t ) y( t ) y( t )= −  . (4) 

is forced to zero in finite time. It will be shown that, provided a sliding motion can 
be attained, estimates of af ( t )  and sf ( t )  can be computed from approximating the 
equivalent output error injection signal required to maintain a sliding motion. 

Consider initially the case when sf ( t ) 0= . 
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Edwards and Spurgeon [4] have shown a sliding mode observer exists if and only if  

(A1) the matrix CF is full rank, 

(A2) the invariant zeros (if any) of (A, F,C) lie in the left half plane 

Furthermore if these two conditions hold then, there exists a change of co-ordinates 
in which the system triple (A, F,C) from (1)-(2) has the following structure : 

[ ]11 12
0

21 22 2

0A    A
A , F , C 0  T

A    A F

⎡ ⎤⎡ ⎤
= = =⎢ ⎥⎢ ⎥

⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦
 .     (5) 

where the sub-matrices ( n p ) ( n p )
11A − × −∈R  ; 

0 q q
2F ×∈R  is non-singular and 

p pT ×∈R  is orthogonal. Define 211A  as the top (p-q) rows of 21A . By 
construction, the pair 11 211( A ,A ) is detectable and the unobservable modes of 

11 211( A ,A )  are the invariant zeros of (A, F, C) [10]. Also for convenience, define 
p q

2F ×∈R  as the bottom p rows of F (which therefore includes the matrix 
0
2F ). 

3.   A sliding mode observer 

3.1.   A description of the sliding mode observer  

Consider the following observer with the same form of Tan and Edwards [5] 

l y nˆ ˆx( t ) A x( t ) B u( t ) G e ( t ) G
ˆ ˆy( t ) C x( t )

 
 

υ+ − +

=

=&
      (6) 

Will be considered where n p
lG ×∈R  is a traditional Luenberger observer gain used 

to make l( A G C )−  stable and n p
nG ×∈R . 

The discontinuous output error injection vector υ  is defined by  

( )⎧ ⎫
− ≠⎪ ⎪

= ⎨ ⎬
⎪ ⎪
⎩ ⎭

y
0 2 y

y

 e
t , y,u P        if e 0

e

0                                     otherwise

ρ
υ

F
      (7) 

where p p
0P ×∈R  is a symmetric positive definite (s.p.d) matrix. The matrices 0P  

and 2F  will be defined formally later. The scalar gain function 
p m:ρ + +× × →R R R R  must be an upper bound on the magnitude of the fault 

signal.  
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Let lG  and nG  represent the observer gain matrices in the new coordinate system 
and define 0 lA A G C= − . A suitable choice for the matrix  nG  is  

T
1

n 0T

LT
G P

   T
−

⎡ ⎤−
⎢ ⎥=
⎢ ⎥⎣ ⎦

  (8) 

where  

( )n p p0L L   0 − ×⎡ ⎤= ∈⎣ ⎦ R   (9) 

with ( ) ( )n p p q0L − × −∈R  and the orthogonal matrix T is part of the output distribution 
matrix C  from (5).  

If the state estimation error is defined as  

ˆe( t ) x( t ) x( t )= −   (10) 

then it is straightforward to show from equations (1), (2) and (6) that  

0 n ae( t ) A e( t ) G F f ( t )υ= + −&   (11) 

The matrices lG , nG and 0P  represent the design freedom associated with the 
observer and are to be determined so that a sliding motion takes place on 

{ }n
yS e  : e 0= ∈ =R . 

Proposition 1 [5]: If there exists a s.p.d matrix P , with the structure 

⎡ ⎤
⎢ ⎥= >
⎢ ⎥+⎣ ⎦

1 1
T TT

1 10

P             P L
P 0

L P     T P T L P L
  (12) 

where ( ) ( )n p n p
1P − × −∈R , and satisfies  

T
0 0PA A P 0+ <  (13) 

then the state error system in equation (11) is quadratically stable. Furthermore, a 
sliding motion occurs in finite time on S governed by the system matrix 

11 211A LA+ . 

Proof: See Proposition 1 and Corollary 1 in Tan & Edwards [5]. 

The Next section focuses on design methods to synthesise the gain Gl  and the 
Lyapunov matrix P  which has the structure given in (12). The problems will be 
posed in such a way that Linear Matrix Inequalities (LMIs) [6] can be used to 
numerically synthesise the required matrices. 
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3.2.   Synthesis of the observers via solving LMIs 

This section describes a tractible design method from [5]. It is based on an LQG 
type approach and is parameterized by two user defined weighting matrices. The 
gain Gl  and the Lyapunov P  will be chosen so that the matrix inequality 

T T
0 0 l lA P P A PW P PG V G P+ < − −  (14) 

is satisfied, where the design weighting matrices W and V are assumed to be 
symmetric positive definite, and P  has the structure in (12).  

Defining 
T

lY : PG=  to transform a problem of BMIs into LMIs and substituting 
for 0A , the inequality (22) can be written as  

T TTA P PA (YC ) YC PW P YVY 0+ − − + + <  (15) 

Using standart matrix manipulations, inequality (15) is identical to  

T T T1 T 1 1PA A P (Y V C ) V(Y V C ) CV C PW P 0− − −+ + − − − + <  (16) 

While choosing 
T 1Y V C−=  eliminates the third term in (16), and hence the 

necessary and sufficient condition for (15) to hold is that P  satisfies  

T 1PA A P CV C PW P 0−+ − + <  (17) 

The problem considered here is one of minimizing 
1

trace ( P )
−

 subject to P  
satisfying (17). By using the Schur complement, the matrix inequality in (17) is 
equivalent to  

T T 1

-1

PA A P C V C         P 0
              P                     -W

−⎡ ⎤+ −⎢ ⎥ <
⎢ ⎥
⎣ ⎦

 (18) 

If n nX ×∈R  is symmetric positive definite then the LMI  

P      I
0

  I       -X  

⎡ ⎤−
<⎢ ⎥

⎢ ⎥⎣ ⎦
 (19) 

is equivalent to 
1

X   P
−

> . Thus minimizing 
1

trace ( P )
−

 subject to (17) is 

equivalent to minimizing trace ( X )  subject to the LMIs (18) and (19). Writing P  
from (12) as  
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11 12
T
12 22

P   P
P 0

P   P

⎡ ⎤
= >⎢ ⎥
⎢ ⎥⎣ ⎦

 (20) 

Where ( n p ) ( n p )
11P − × −∈R , p p

22P ×∈R  and 

[ ]12 121P : P    0=  (21) 

with ( n p ) ( p q )
121P − × −∈R , it follows there is one-to-one correspondence between 

the variables 11 121 22( P ,P ,P )  and 21( P ,L,P )  since 

11 1P P=  

0 1
11 121L P P−=  

T 1 T
0 22 12 11 12P T( P P P P )T−= −  

(22) 

and the gain lG  from (6) as 

1 T 1
lG P C V

− −=  (23) 

This represents a convex optimization problem. LMI Control Toolbox of PC-Math-Lab 
such as [11], can be employed to synthesise numerically P  and X .  

4.   Fault reconstruction  

If a further linear change of co-ordinates  

n p
L

I    L
T

 0     T
−⎡ ⎤

= ⎢ ⎥
⎢ ⎥⎣ ⎦

  (24) 

is applied to the triple ( A,F ,C )  and its Lyapunov matrix P , the system matrix, 
fault distribution matrix and the output distribution matrix will be in the form  

⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥ ⎣ ⎦⎣ ⎦⎣ ⎦

11 12
p

221 22

A    A 0
A = , F = , C = 0  I

FA    A
 (25) 

where 0
11 21111 A L A= +A . In the new co-ordinate system, the Lyapunov matrix 

(12) and the nonlinear gain matrix from (8) will respectively 
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11 T 1
L L

0

P     0(T ) P(T )
0     P

− − ⎡ ⎤
= = ⎢ ⎥

⎢ ⎥⎣ ⎦
P    (26) 

and  

nn L 1
0

0
T G

P−

⎡ ⎤
= = ⎢ ⎥

⎢ ⎥⎣ ⎦
G  (27) 

As argued in [4], the fact that P  is a block diagonal Lyapunov matrix for lA - G C  
implies that 11A  is stable and hence the sliding motion is stable.      

The state estimation error in the new co-ordinates system is 

L ae ( t ) e( t ) f ( t )ν= + −& 0 nA G F   (28) 

where 0 lA = A - G C . Partitioning the state estimation error conformably with (25) 
yields 

1 11 1 12 l ,1 ye ( t ) e ( t ) ( )e ( t )= + −& A A G  (29) 

y 21 1 22 l ,2 y 2 ae ( t ) e ( t ) ( )e ( t ) f ( t )υ= + − + −& A A G F  (30) 

where l,1G  and l,2G  represent an appropriate partitions of the linear output error 

injection matrix LLT G=lG  after the coordinate transformation in (25). Notice this 
is precisely the canonical form for fault reconstruction proposed in [9].  

4.1.   Reconstruction of actuator faults 

Once a sliding motion has been attained y ye 0 et  e 0 = =&  and the discontinuous 

output error injection term υ  can be replaced by éqυ , the so called ‘equivalent 
output error injection’ required to maintain a sliding motion [4], [9]. From (29)-(30), 
during sliding mode 

−

=

= − +

1 11 1
1

21 1 2 a 0 éq

e ( t ) e ( t )

0 e ( t ) f ( t ) P υ

& A

A F
 

(31) 

 (32) 

From (32), and using the fact that 11A  is stable, it follows that 1e 0→  and therefore 

1
0 éq 2 aP f ( t )υ− →F  (33) 

Suppose that the discontinuous component in (7) is replaced by the continuous 
approximation 
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( )= −
+
y

0 2
y

 e
t , y,u P  

eδυ ρ
δ

F   (34) 

where δ  is a small positive scalar. It can be shown that the equivalent output 
injection can be approximated to any degree of accuracy by (34) for a small enough 
choice of δ . Since rank (F2) = q it follows from (33) that 

yT 1 T 1
a 0 2 2 2 2 0

y

 e
f̂ ( t )  P ( ) P

e
ρ

δ
− −≈ −

+
F F F F  (35) 

4.2.   Reconstruction of sensor faults 

Now consider the case when af ( t ) 0≡  and consider the effect of sf ( t ) . In this 
situation equation (2) becomes 

oy( t ) C x( t ) f ( t )= +  (36) 

and therefore y 2 oe ( t ) e ( t ) f ( t )= − . It follows that 

1 11 1 12 s 12 y
-1

y 21 1 22 s 22 y s 0

e ( t ) e ( t ) f ( t ) ( )e

e ( t ) e ( t ) f ( t ) ( )e - f (t) + P υ

= + + −

= + + −

&

&&

l,1

l,2

A A A G

A A A G
. (37) 

Arguing as before, provided a sliding motion can be attained,  

-1
21 1 s 22 s 00 e (t) - f (t) f ( t ) + P υ= +&A A . (38) 

If the fault signal sf ( t )  is slowly varying compared with the dynamics of the 

sliding motion in (37), -1
111 se   f≈ − 12A A  and the derivative sf&  in (38) can be 

ignored. Consequently 

1 1
0 eq 11 sP (   ) fυ− −≈ − −22 21 12A A A A  (39) 

As in the previous section, the equivalent output injection eqυ  can be calculated 

from (34) and consequently if 1
11(   )−−22 21 12A A A A  is non singular the fault signal 

can be obtained from equation (39).  
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u Plant 

Sliding Mode Observer  
Based on (A, F, C) from (6) 

Sensor fault, fs 

y 

ˆ
af  

υéq 1 1 1
11 0(   ) P− − −−22 21 12A A A A  

ˆ
sf  

T 1 T 1
2 2 2 0( ) P− −F F F  

Actuator fault, fa 

+ +

A complete FDI scheme using SMO is shown in Figure 1. 

 
 
 
 
 
 
 
 
 
 
 
 
Figure 1. Schematic of the fault detection structure using the sliding mode observer. 

5.   Illustrative example 

The FDI scheme in this paper will now be demonstrated with an example, which is a 
lateral axis model of an L-1011 in cruise flight conditions taken from reference [4].  

The system states, outputs and inputs respectively are  

-1 wo
-1

-1

5

: bank  angle (rad)
r : washed  out  yaw rater : yaw rate (rad s )
p : roll  rate (rad s )x p : roll  rate (rad s ) ,    y=

: sideslip angle (rad: sideslip angle (rad)
x : washed  outfilter  state

φ

ββ

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

r

a

)
: bank  angle (rad)

: rudder deflection ( rad )
u

: aileron deflection ( rad )

φ

δ
δ

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

 

 

(40) 

The system triple ( A,F ,C )  is given by  
0            0             1.0000     0             0
0           - 0.1540   - 0.0042     1.5400    0

A 0             0.2490   - 1.0000   - 5.2000    0
0.0386   - 0.9960   - 0.0030   - 0.1170    0
0             

=

0.5000     0             0           - 0.5000

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

(41) 
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  0             0
-0.7440   -0.0320

B=F=  0.3370   -1.1200
 0.0200    0
 0              0

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

,      

0     1     0     0    -1
0     0     1     0     0

C
0     0     0     1     0
1     0     0     0     0

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

 

It can be verified that the distribution matrix F in (41) results in CF being full rank 
and the system (A, F, C) does not have any invariant zeros. Hence, the observer 
design method proposed in § 3.2 was adopted. 

5.1.   Observer design  

The system (A,F,C)  in the canonical form of (5) is given by  

-0.0133    0.0007    0.0172   -0.2837   -0.6267
 0             0            -0.0008   -0.9110    0.4125

A -0.7071    0.0386   -0.0858    0.4192   0.9199
-0.1227    0.0004    4.1018   -0.8028   0.4471
 0

=

.1545    0.0009   -3.5336    0.0581   -0.8692

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

T  0.0000    0   -0.0000    0.0000    0.8170
F

-0.0000    0   -0.0000    1.0335   -0.4328
⎡ ⎤

= ⎢ ⎥
⎣ ⎦
0       0            0.0265   -0.4124   -0.9106
0      0           -0.0008   -0.9110    0.4125

C
0     0             0.9996    0.0103    0.0245
0    1.0000     0             0             0

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

 

 

 

 

 

 

(42) 

Choosing the weighting matrices respectively as 5w 0.8I= , 4V 0.2I=  and 
imposing, the design constraints described earlier the following observer gain 
matrices (in the original coordinates) were obtained: 

0

 3.7711    0.8538    0.1744   -0.1165
 0.8538    3.2996    2.8969   -0.6173

P
 0.1744    2.8969    5.6625   -0.3588
-0.1165   -0.6173   -0.3588   2.4010

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

 (43) 
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l

-0.0492       0.5457   -0.1383    2.1997
 1.2729       0.2967   -0.6963    0.0753

G -0.6229       3.1433   -1.5543    0.5457
 0.2708      -1.5543    1.6611   -0.1383
   -0.1799    0.9196   -0.9671    0.1

=

245

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

     

n

-0.0098    0.1091   -0.0277    0.4399
 0.2546    0.0593   -0.1393    0.0151

G -0.1246    0.6287   -0.3109    0.1091
 0.0542   -0.3109    0.3322   -0.0277
-0.0360    0.1839   -0.1934    0.0249

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢=
⎢
⎢
⎢⎣ ⎦

⎥
⎥
⎥
⎥

 

(44) 

In the canonical form of (16) the triple ( )A,F,C  is given by 

-0.5778   -0.1083   -0.0303    0.4130   0.0153
-0.1089   -0.6516   -0.0043    1.6290   -0.0031
 0.1761    0.2452   -0.9999   -5.3438   0.0049
-0.7043   -0.9807   -0.0034    0.4583   0.0188
 0        

=A

     0             1.0000         0         0

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

T  0.0000   -0.7440    0.3370    0.0200        0
-0.0000   -0.0320   -1.1200    0.0000        0
⎡ ⎤
⎢ ⎥
⎣ ⎦

F =

0    1.0000    0.0000       0            0
0    0             1.0000       0            0
0    0             0               1.0000    0
0    0             0               0            1.0000

⎡ ⎤
⎢ ⎥
⎢=
⎢
⎢
⎣ ⎦

C ⎥
⎥
⎥

 

 

 

 

 

 

(45) 

The eigenvalues of 0A are { }-2.6942  2.2925i, -0.6537, -2.0929  0.1898i± ± . The 
eigenvalue of  11A  is -0.5778  and hence the sliding motion is stable. 
From this representation it can be seen that 

T-0.7440   0.3370  0.0200  0
-0.0320 -1.1200  0.0000   0
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

2F       (46) 

5.2.   Observer simulations  

In the first simulations, the discontinuous observer designed in the previous 
subsection has been utilized. The scalar design parameter 50ρ = , and the 
discontinuous vector υ  has been approximated by 
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y
approx 0 2

y

e
P    with  =0.025

e
υ ρ δ

δ
= −

+
F  

The bank angle, roll rate and sideslip states appear directly as outputs and so theirs 
estimates need not be showed. However the yaw rate state 2x  appears as linear 
combination with washed out filter state 5x .  Figure 2 shows the states 2x  and 5x  
plotted for comparison against the estimated values 2x̂  and 5x̂ . It can be seen that 
after 1.5 sec almost perfect tracking in both states is obtained and the sliding motion 
of the error system is close to zero.  

 
Figure 2.        (a) : the trajectories of state vector 2x ( t )  and estimator vector 2x̂ ( t )   
                       (b) : the trajectories of state vector 5x ( t )  and estimator vector 5x̂ ( t )  

5.3.   A sliding mode fault detection system  

The following simulations show the faults in both actuators and the first sensor, as 
well as their respective reconstructions, which visually are identical to the faults. 
This shows that the method presented in this paper is successful. 

5.3.1   Simulations in the absence of measurement noise 

Figures 3 and 4 show the sliding mode observer faithfully reconstructing faults 
simultaneously occurring in both actuators. Figure 5 shows that the observer 
reconstructs faithfully the faults acting on the first sensor.  
 

 (a)                                                                 (b)        
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Figure 3.         (a): Fault signal on the first actuator (solid line -) 
                         (b): Reconstruction of the fault actuator 1 (dashed line --) 

 
Figure 4.         (a): Fault signal on the second actuator (solid line -) 
                         (b): Reconstruction of the fault actuator 2 (dashed line --) 

 
Figure 5.         (a): Fault signal on the first sensor (solid line -) 
                         (b): Reconstruction of the fault sensor 1 (dashed line --) 

(a)                                                            (b) 

            (a)                                                                   (b) 

(a)                                                                   (b) 

 
104                                                                                  IJ-STA, Vol. 1, N° 1, June 2007



 
 

 
 

5.3.2   Simulations in the presence of measurement noise 

The following figures are from simulations of identical scenarios to those considered 
above except white noise of standart deviation of 410−  has been added to the output 
signal so that the measured signal which is used by the fault detection observer is 
corrupted. 

From Eq. (37) it can be seen that theoretically the derivative of the noise appears in 
the output error channel and hence constitutes a large disturbance. Thus arbitrarily 
large values of ρ would be needed to sustain a sliding motion. 

As before in Figures 6, 7 and 8 the observer replicates the fault, except noise is now 
overlaid on the reconstruction signal. 

 

Figure 6.         (a): Fault signal on the first actuator  
                         (b): Reconstruction of the fault actuator 1  

  

Figure 7.         (a): Fault signal on the second actuator  
                         (b): Reconstruction of the fault actuator 2  

(a)                                                            (b) 

            (a)                                                                   (b) 
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Figure 8.         (a): Fault signal on the first sensor  
                         (b): Reconstruction of the fault sensor 1  

6.   Conclusion 

This paper has described the design of a sliding mode observer using Linear Matrix 
Inequalities (LMIs). The design approach was formulated as a convex optimization 
problem which can be efficiently solved using standart LMIs tools. The observer 
design methodology was built on the work of Edwards & Tan [5]. The 
implementation of this observer is useful for detecting and reconstructing actuator 
and sensor faults. A simulation based on a lateral axis model of an L-1011in cruise 
flight conditions has demonstrated its effectiveness in achieving fault detection and 
isolation. 
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