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Abstract—This paper is dealing with finite time path tracking
control for a nonholonomic mobile robot affected by paramet-
ric uncertainties and external disturbances. First, an adaptive
kinematic controller that produces velocity command is de-
veloped. Then, to remove the reaching phase, a time varying
nonsingular terminal sliding mode (T-NTSM) dynamic controller
is introduced by incorporation an exponential function into
the nonsingular terminal sliding mode (NTSM) manifold. The
proposed (T-NTSM) controller guaranties not only fast and finite
time error convergence, but also removes the issue of singularity
dilemma that conventional terminal sliding mode manifold suffers
from. Finally, simulation results confirm the effectiveness of the
designed control law.

Index Terms—Mobile robot, Finite time convergence, Dynamic
time varying sliding mode control, Adaptive kinematic control,
uncertainties and disturbances.

I. INTRODUCTION

Mobile robot is suitable in various applications, such
as in inaccessible terrains like underground tunnels [1],
in military activities [2] and in mine operations [3]. The
working condition could be extremely uncertain because of
change payload and variation of the external environment.
Accordingly, robot control under the above mentioned
condition is a crustal problem to overcome.

Sliding mode control (SMC) has been widely used owing to
its consistent performance to disturbances as well as parameter
variations, and its simplicity. In the SMC strategy a linear
sliding hyperplane is considered as sliding surface, and the
error converge asymptotically to zero when the system reaches
the sliding mode [4], [5]. However, the equilibrium point is
reached in infinite time. With the focus of achieving finite time
convergence, terminal sliding mode (TSM) control, which add

a nonlinear function to the sliding surface, is developed [6],
[7]. But, the TSM suffers from the singularity issue as well
as the deterioration of performance related to the error states
far from the equilibrium. In order to overcome the singularity
issue, the nonsingular terminal sliding mode (NTSM) control
is introduced [8], [9]. To upgrade the system convergence
properties, fast terminal sliding mode (FTSM) is mentionned
in [10]. The fusion of these two yields to nonsingular fast
terminal sliding mode (NFTSM) control, used in controlling
different nonlinear systems [11], [12]. The main disadvantage
of NTSM and NFTSM is that the effective tracking is ensured
only after the system states attain the sliding surface. During
the reaching phase, parameter variation and disturbances are
not totally removed, and some time after the beginning of the
robot motion is required to obtain good tracking performance.
In order to avoid the sensitivity issue in the reaching phase,
the concept of time-varying sliding mode control is introduced.
This paper deals with trajectory tracking problem of mobile
robot. First, a kinematic controller that ensures the estimation
of the parameter d is introduced. It is obvious to give impor-
tance to the estimation of this parameter as it has great relation
with the variation of the robot mass and inertia. Then, based
on a newly sliding surface, a T-NTSM controller is designed
for finite time convergence. The major contributions can be
summarized:

1) Compared with the existing kinematic controllers
[13], [14] which are formulated under the assumption
that kinematic parameter is well known, an adaptive
tuning control law is introduced to estimate the
uncertain kinematic parameter.

2) The proposed T-NTSM contains exponential function



in the sliding surface to avoid infinite time conver-
gence and singularity issues.

3) Unlike FNTSM, in which the robot is sensitive to
uncertanties and disturbances on the reaching phase,
the proposed control law is apt to remove it. There-
fore, good tracking performance is guaranteed, even
if the system state is far away from the equilibrium.

4) By using the proposed control method, the conver-
gence rate is improved, small amplitude of the input
torques is provided.

The organization of the paper is: In section 2 the model
of the system is presented. Kinematic controller design
methodology is illustrated in section 3. Dynamic controllers
based on terminal sliding mode strategy are explained in
section 4. Simulations are described in section 5. Conclusions
are drawn in section 6.

II. PROBLEM FORMULATION

The dynamic equation of motion of wheeled mobile robot
is described in [8]:

�M(q) �Z + �C(q, _q) _Z = �τ + �τd (1)

_q = J(q) _Z (2)

where

J(q) =

24 cosφ �d sinφ
sinφ d cosφ

0 1

35 (3)

_Z = V = [u w]T (4)

where u and w represents the linear velocity and
angular velocity of the robot system, respectively.
�M(q) = JTMJ , �C(q, _q) = JT (M _J + CJ), �τd = JT τd and

�τ = JTBτ .

Then equation (1) can be expressed as follows:

�M0(q) �Z + �C(q, _q) _Z = �τ + � (5)

where � = �Md(q) �Z + �Cd(q, _q) _Z + �τd. � is called lumped
uncertainty and contains all uncertainties including external
disturbances.
Assumption 1. �M0(q) is invertible and bounded positive
definite matrix. Thanks to assumption the dynamic system 5
considering disturbances and uncertainties is defined as:

�Z = �M�1
0 (�τ + �� �C0

_Z) (6)

Assumption 2. The external disturbances and uncertainties are
bounded, so � is bounded and garantees k � k� D� where
D� is the unknown maximum of the uncertainty vector.
Two parts will be considered in the design of the controller:
� The first part will involve the design of an adaptive

kinematic controller, such that if we have a reference
trajectory qr, the error e = qr � q converges to zero.

� In the second part, a dynamic controller will be developed
based on sliding mode techniques such that it generate the
required input torques τ for the robot system.

III. ADAPTIVE KINEMATIC CONTROL DESIGN

Consider that a reference trajectory described by qr(t) =
[xr yr φr]

T and Vr = [ur wr]
T is generated by a

reference mobile robot. Then the tracking position errors can
be expressed as follows:

qe =

0@ cosφ sinφ 0
� sinφ cosφ 0

0 0 1

1A0@ xr � x
yr � y
φr � φ

1A (7)

The derivative of (7) is given by:

_qe =

0@ �u + we2 + ur cos e3 � dwr sin e3

�we1 + ur sin e3 � dw + dwr cos e3

�w + wr

1A (8)

Then, the velocity controller is designed as:

Vd =

�
ud
wd

�
=

�
ur cos e3 + k1(e1 + d̂(1� cos e3))

wr + ur(e2 � d̂ sin e3) + k2 sin e3

�
(9)

k1 and k2 are positive constants. and the adaptive law for
unknown parameter d is given by:

_̂
d = (ur cos e3 � u)(1� cos e3) + ursin

2e3 (10)

We define :

L1 =
1

2
(e1 + d(1� cos e3))

2
+

1

2
(e2 � d sin e3)

2
+(1�cos e3)+

1

2
~d2

(11)
we note ~d = d� d̂ the estimation error of the distance d, The
derivative of (11) is:

_L1 = (e1 + d(1� cos e3))( _e1 + d _e3 sin e3)
+(e2 � d sin e3)( _e2 � d _e3 cos e3)

+ _e3 sin e3 + ~d
_~d

= (e1 + d̂(1� cos e3))(ur cos e3 � u) + sin e3(ur(e2 � d̂ sin e3)

+(wr � w))� ~d(
_̂
d� (ur cos e3 � u)(1� cos e3) + ursin

2e3)
(12)

The substitution of velocity control law (9) into (12) and the
use of the adaptive law (10), we have

_L1 = �k1(e1 + d̂(1� cos e3))2 � k2sin2e3 (13)

_L1 � 0. Thus, it is easy to conclude that qe ! 0 as t ! 1.
As consequence from (7) that x0 ! xr, y0 ! yr and φ! φr
as t!1.

IV. ROBUST DYNAMIC CONTROL WITH FINITE TIME
CONVERGENCE

Define the variable _Zd = Vd. The tracking velocity error
and its derivative have the following forms:

ε1 = Zd � Z (14)

ε2 = _Zd � _Z (15)

The problem is to find a controller �τ such that ε1 and ε2

converge to zero in finite time.



A. Nonsingular terminal sliding mode (NTSM)

The nonsingular Terminal Sliding Mode controller (NTSM)
is selected as:

s(t) = "1 + �
0
j _"1jp=qsign( _"1) (16)

where�
0

= � � p=q is a strictly positive de�nite constant,p and
q are positive odd integers satisfying1 < p=q < 2.
The time derivative of the sliding surface (16) is:

_s(t) = _"1 + �
0 p
q

j _"1jp=q� 1 •"1 (17)

For s(t) = 0 , the system dynamics are equivalent to :

"2 + �
0 p
q

j"2jp=q� 1 _"2 = 0 (18)

Then, substituting the equation (6) without considering distur-
bances into (18), we obtain:

_s(t) = "2 + �
0 p
q

j"2jp=q� 1( •Zd � �M � 1
0 (�� � _Z �C0(q; _q)) (19)

The equivalent control law�� 0 is given by:

�� 0 = �
1

� 0 p
q

j"2j2� p=q �M 0 + �M 0(q) •Zd + �C0(q; _q) _Z (20)

The switching control law is :

�� 1(t) = � �M 0(�s + �sign (s)) (21)

Thus, the developed control law is :

�� (t) = �� 0(t) + �� 1(t)
= � 1

� 0 p
q

j"2j2� p=q �M 0+
�M 0(q) •Zd + �C0(q; _q) _Z � �M 0(�s + �sign (s))

(22)

It is important to note that if the sliding surface is achieved,
i.e., s(t) = 0 , the robot dynamics can be represented by:

_"1 = � �
0� q=pj"1jq=psign("1) (23)

B. Nonsingular fast terminal sliding mode NFTSM

A nonsingular fast terminal sliding surface for the robot
system can be illustrated by adding one more non linear term
to the NTSM sliding surface (16) as

s = "1 + � j"1j 
 sign("1) + �
0
j _"1jp=qsign( _"1) (24)

where� and�
0

are positive constants,1 < p=q < 2, 
 > p=q
andsig(:) is a function.
Considering the sliding surface de�ned in (24) and according
to the suf�cient condition for existence of TSM, the NFTSM
control law is introduced:

�� = �� 0 + �� 1

= � 1
� 0 p

q
j"2j2� p

q �M 0(1 + �
 j"1j 
 � 1)sign("2)

� �M 0(�s + �sign (s))

(25)

When the terminal sliding mode is achieved i.es = 0 , the
system dynamics is equivalent to

"1 + � j"1j 
 sign("1) + �
0
j _"1jp=qsign( _"1) = 0 (26)

The time taken to move from"1(t r ) 6= 0 to "1(t r + ts) = 0
is �nite and de�ned by

ts = � (
1
� 0 )q=p

0Z

" 1 ( t r )

1

(� � �� 
 )q=p
d� (27)

Theorem 1 describes the introduced control law:

Theorem 1. If the system containing parametric
uncertainties (mass, inertia) and unknown external
disturbances described by (2) and (5) and if the sliding
surface is designed as (24) and the control torque is de�ned
as (25), then the robot motion converge to the de�ned sliding
surface in a selected timetS .

Proof. Consider the following Lyapunov function candidate:

L 2 =
1
2

s2 (28)

By differentiatingL 2 and using equation (24),we obtain

_L 2 = s_s = s("2 + �
 j"1j 
 � 1"2 + � 0
p
q j"2jp=q� 1 _"2) (29)

The substitution of the dynamic error (15) into (29) yields:

_L 2 = s_s = s("2+ �
 j"1j 
 � 1"2+ �
0 p
q

j"2jp=q� 1 ( •Zd � •Z ) (30)

By substituting equation (6) and the control law (25) into (30),
we obtain

_L 2 = s�
0 p
q

j"2jp=q� 1
�

� �M 0
� 1� � �s � �sign (s)

�
(31)

Then,
_L 2 � �

p
q

j"2jp=q� 1 (� D � � � � � ) jsj (32)

We can conclude that the system states achieve the equilibrium
point in a precious time.

C. Time varying Nonsingular terminal sliding mode (T-NTSM)

To tackle the drawbacks of The NTFSM controller, a
time-varying nonsingular terminal sliding mode (T-NTSM)
manifold is introduced :

s(t) = "1 + �
0
j"2jp=qsign("2) � e� �t s0 (33)

� > 0 is a de�ned constant,t is the time. s0 = "10 +
�

0
j"20 jp=qsign("20) in which "10 and "20 are the initial

conditions of"1 and"2, respectively.
The sliding surface (33), ensures that the surface starts at the
initial condition. Accordingly, the reaching phase is removed
and the exponential decay term guarantees that the sliding
surface will not have an offset. When the initial conditions
for the system error are zero, the sliding surface becomes the
same as de�ned in (16).
Using the sliding surface determined by 33, the controller can
be introduced :

�� = �� 0 + �� 1

= � 1
� 0 p

q

�M 0j"2j1� p=q �
"2 + �e � �t s0

�
+

•Zd �M 0 + _Z �C0 � �M 0 (�s + �sign (s))

(34)



Theorem 2. The reaching phase is eliminated and global
robustness is guaranteed, if the sliding surface is selected
as (33) and the control torque is developed as (34), for the
system de�ned by (2) and (5)

Proof. Consider the following Lyapunov function candidate:

L 2 =
1
2

s2 (35)

Differentiating L 2 with respect of time and using equation
(33), we obtain

_L 2 = s_s = s("2 + �
0 p
q

j"2jp=q� 1 _"2 + �e � �t s0) (36)

By substituting dynamic error (15) and equation 6 in 36, we
�nd

_L 2 = s("2 + �
0 p

q j"2jp=q� 1( •Zd � •Z ) + �e � �t s0)

= s("2 + �
0 p

q j"2jp=q� 1( •Zd � �M � 1
0 (�� � �C0 _Z + �)) + �e � �t s0)

(37)
The substitution of the control law (34), yield

_L 2 = s�
0 p
q

j"2jp=q� 1
�

� �M 0
� 1� � �s � �sign (s)

�
(38)

Then,
_L 2 � �

p
q

j"2jp=q� 1 (� D � � � � � ) jsj (39)

It is obvious thatD � , � and� are positive,_L 2 in non positive.
As consequenceL 2 � 0 givess � 0 for t � 0.

V. SIMULATION RESULTS

Simulations studies are used to show the T-NTSM
controller ef�cacy. A comparative study between T-NTSM,
NTSM and NFTSM controllers is presented.
The initial conditions are :q(0) = [ x0; y0; ' 0] = [0 ; 0; � =3].
The control gains in the kinematic controller are
k1 = 0 :19; k2 = 0 :19. In the NTSM manifold we have
� = 50, � = 90, �

0
= 15,p=q= 7=5. Identical value of� , � ,

�
0

andp=qare selected for NFTSM and T-NTSM manifolds.
In the NFTSM controller, the parameters� and
 are selected
as � = 30 and 
 = 2 :1. In the T-NTSM the parameter� is
designed as� = 10.

The reference trajectory is :x r (t) = 0 :2t + 0 :3; yr (t) =
0:5 + 0:25 sin(0:2�t )
To demonstrate the ef�ciency of our algorithm, we consider
that parameter variation in the dynamic model and external
disturbances occurred. Accordingly, their nominal value are
increased by an additive variance of20%, which impliesmc =
mc0 + 0 :2mc0, mw = mw0 + 0 :2mw0, I c = I c0 + 0 :2I c0,
I w = I w0 + 0 :2I w0 and I m = I m 0 + 0 :2I m 0.
The external disturbances are selected as:
� d = [10 � rectpuls(t � 10; 2); 10� rectpuls(t � 17; 2)];
For better comparison, the performances of NTSM, NFTSM
and T-NTSM controllers are quanti�ed and compared in Table
I. In this table the integral of the absolute value of the velocity

Fig. 1. Mobile robot with two actuated wheels.

tracking error (IAE) and the integral of the square value (ISV)
of the torque input are illustrated.

IAE =

t fZ

0

j"2jdt (40)

and

ISV =

t fZ

0

� 2(t)dt (41)

t f de�nes the running time.

The tracking results are shown in Figs 2 and 3 respectively.
Figs 4, 5 shows actual and desired velocities. The input torques
are illustrated in Fig 6 and sliding manifolds are illustrated in
Fig 7.
It can be seen that the T-NTSM controller, has good tracking
performance (Fig 2), and the posture tracking errors are lower
than those with NTSM and NFTSM (Fig 3). Figs 4, 5 show
that signi�cant peaks of actual linear and angular velocities oc-
cur under external disturbances (att = 10s andt = 17s) using
NTSM and NFTSM controllers. These peaks are successfully
removed using the proposed T-NTSM manifold as illustrated
in Figs 4-(c), 5-(c). So, we can con�rm the indifference of
the proposed method toward external disturbances. Moreover,
actual linear and angular velocities are too closed to the
velocity command. In addition, it can be concluded from the
quantitative analysis shown in table I that the designed T-
NTSM offers lower values of IAE than the existing control
methods.
The input torques produced by the NTSM and NFTSM con-
trollers present a peak when external disturbances occurred (at
t = 10s andt = 17s). Whereas, the input torques obtained by
the developed T-NTSM controller are smooth and the effect of
external disturbances is insigni�cant (Fig 6). Moreover, based
on the results of NTSM and NFTSM controllers, we can af�rm
that the proposed T-NTSM controller produces small control



torques at the beginning of the robot motion ( Table I). Fig
7 shows the illustrated controllers good performance in term
of fast convergence in a �nite time. However, the proposed T-
NTSM controller can tackle the effect of external disturbances
at t = 10s and t = 17s better than NTSM and NFTSM
manifolds.
To summarize, the T-NTSM dynamic controller combined
with the adaptive kinematic controller offer robustness to the
controlled system even if the system has model uncertainties
and disturbances.

TABLE I
QUANTITATIVE ANALYSIS UNDER UNCERTAINTIES AND EXTERNAL

DISTURBANCES.

Controllers IAE ISV
(ud � u) ( wd � w) � l � r

T-NTSM 0.8925 1.8655 1.0355 1.0626
NFTSM 1.0303 2.1725 1.4067 1.7621
NTSM 1.1136 2.6163 1.5296 1.8132

Fig. 2. Trajectory tracking performance.

VI. CONCLUSION

This paper investigates an accurate trajectory tracking con-
trol issue of wheeled mobile robot when uncertainties and
external disturbances can happen. An adaptive kinematic
controller is �rst developed to generate velocity command
such that posture tracking errors reach the zero vector. Then,
dynamic controller based on sliding mode techniques and non
singularity is designed to produce the required torques for the
robot motion. The reaching phase is removed, the robustness
performance is guaranteed and the fast convergence rate is
obtained, by the proposed T-NTSM method, as compared to
the NTSM and NFTSM manifolds. Finally, good performance
of the proposed controller is shown thanks to simulation
results.

(a) Tracking error in the X axis

(b) Tracking error in the Y axis

(c) Orientational error

Fig. 3. Comparison of tracking errors.
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