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Abstract.  A method for the design multivariable generalised predictive con-
trollers based on the compensation of interactions is introduced. The design 
proceeds in two steps. In the first step, the interactions are ignored and single 
input single output generalised predictive controllers are designed for the re-
sulting subsystems. In a second step, a fuzzy compensator of interactions act-
ing feedforward  produces compensation signal for each subsystem. A 
multiobjective genetic algorithm is used to find the optimal parameters of the 
fuzzy compensator. The method is applied in simulation to the multivariable 
control of a binary distillation column. 
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1. Introduction 

The problem of the design of the controllers for a multivariable linear systems is 
strongly related to the presence of the interactions between the single-variable sub-
systems that constitute the overall system. Several approaches have been developed 
for the resolution of this problem, [1]. We can distinguish two classes of methods. 
The first proceed in two steps. In the first step, we seek a decoupling or pseudo 
decoupling between subsystems, in the second step, we build an independent con-
troller for each subsystem thus obtained. These methods have shown a lack of ro-
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bustness [1]. The second class of methods considers the multivariable system as a 
whole and then tries to find a multivariable controller. Some of these methods have 
guaranteed properties of robustness.  
In this work, we propose an approach which follows the methodology of the first 
class. In a first stage, each subsystem is controlled independently of the other by 
generalized predictive controller with parameters calculated without taking account 
of the interactions. In a second stage, a fuzzy compensator of interactions, based on 
Takagi Sugeno inference system [2] is designed with the objective of compensating 
the interactions. It is based on a feedforward control strategy after measurements of 
the signals from the single-variable controllers. The quasi-optimal parameters of the 
fuzzy compensator are obtained using a multiobjective genetic algorithm. This paper 
is organized as follows: in the second section, we introduce the background of the 
method: the feedforward control, the fuzzy inference systems and the multiobjective 
genetic algorithms, in the third section we present the algorithm and in the fourth 
section we describe an application to a distillation column.  

2. Background:  

2.1 The feedforward control 

The feedforward control [4], is based on the anticipation of the effect of the 
measurable disturbance which acts on the variable to be controlled. It will then be 
possible to act on  the control signal in order to keep constant the controlled vari-
able. This type of control is only possible if the transfer between the disturbance and 
the variable to be controlled is known.  

2.2 The fuzzy inferences systems 

The fuzzy inferences systems operate on linguistic variables instead of the nu-
meric variables. The fuzzy system is characterized by only one fuzzy relation which 
is determined by the combination of all the fuzzy rules, as follows: 

),....,,( 21 nRRRalsoR =                                  (1) 
A fuzzy inferences system is made up of three parts [5]:  

- Fuzzification  interface twhich transforms the numerical values into linguistics 
values 

 - A  knowledge base defined by a data base providing the necessary information 
used for the exploration of the fuzzy rules and handling of the data in the fuzzy 
system of inference and a base of rules. A logic of decision able to simulate the 
human decisions based on fuzzy concept and  to infer the control actions.  

- The defuzzification which transforms the linguistic values of the output into 
numerical value.  
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2.3 Multi-Objective Genetic Algorithms, MOGA 

A Simple Genetic Algorithm, SGA, is a heuristic algorithm of search for opti-
mum based on the process of natural evolution [6]. The SGA simulates this process 
through coding and special operators and works with a population of individuals or 
chromosomes. A chromosome is composed of subchromosomes each representing a 
coding of one variable of the problem and represents a feasible solution to the prob-
lem with an associated value of the cost function, here the fitness, to be optimised. 
A population is then a set of admissible solutions. By applying genetic operators to 
the current population a new population is created with the goal of improving the 
fitness. The three classical genetic operators are reproduction, crossover and muta-
tion [6]. SGA   deals with problem of optimisation with only one criterion. This 
criterion (represented by the function to optimise) was transformed in the form of a 
function of adaptation. This approach works well for many problems. However, in 
some practical problems several criteria are used simultaneously and it is no more 
possible (nor desirable) to combine them in only one function. In this situation, we 
are confronted with a problem with multiple objectives. The problem of multiobjec-
tive optimisation consists in simultaneously optimising several objectives, it is for-
mulated as follows. Let us consider the case of maximization of two objectives:  

maximize f(x)=(f1(x),f1(x))   
Such as x∈Χ  
x1  and x1  are two solutions to be compared. It is said that x1 dominates x2 if and 

only if:  
 f1 (x1) > f1(x2) and  f2(x1) ≥ f2(x2)  or  f1(x1) ≥ f1(x2) and  f2(x1) > f2(x2)  
The non-dominated individuals are defined as the Pareto front   (criterion of non-

predominance).  
The multiobjective Genetic Algorithm, MOGA, used here is given by the following 
steps [7]:  

1. Initialisation  
 An initial population of individuals is generated randomly,   
2.  Ranking: 
The operation of ranking consists in creating ranks of individuals based on the 

so-called dummy fitness: 
a. For each population find the non-dominated individuals according to the defi-

nition above. Give the same pseudo-fitness (Dummy Fitness (DF)), f0  for these 
individuals (generally f0=1)  

b. To maintain a diversity in the population, the DF of each individual in the front  
is multiplied by a quantity called niche and proportional to the number of individu-
als in the front, to obtain the new dummy fitness: f0.mi , where: 

         ( )( )∑
=

=
M

j
i

jidShm
1

,                                        (1)

   
i  : index of the individual, M   a  number of individuals in the front,  
Sh  : the function of division, and it is defined by:   
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shareσ
d(i,j)Sh(d(i,j)) −= 1

  ; if   d<σ      (2) 
0)),(( =jidSh      ; if  d>0   

 with   Sh(d(0))=1 
σ  : is the phenotypical distance between 2  individuals.   
d(i, j) :  is the distance between 2 individuals, it  can be calculated by the Euclid-

ean distance. 
The individuals of this front are extracted from the population and the ranking 

operation is repeated with the remaining individuals to form the next front with 
initial dummy fitness equal to the smallest fitness of the preceding front. 

3. Application of the Simple Genetic Algorithm  
Once the whole population is ranked, The Simple Genetic Algorithm (AGS) is 

applied to the ranked population obtained in step 2 to obtain a new population. 
4.   If the stopping criterion is verified   STOP  if not one returns to stage 2. 

3. The Fuzzy Compensator of the Interactions, FCI 

3.1 Basic structure 

In the algorithm proposed, a Feedback/Feedforward control is introduced. The 
feedback consists in controlling each subsystems independently from the other by a 
single input single output, SISO, controller, the interactions considered as measur-
able disturbances, will be compensated by signals outputs from the fuzzy compensa-
tor of the interactions, FCI, based on Takagi Sugeno model. The strategy of control 
is done in two stages. In the first stage, single input single output, SISO, predictive 
controllers of the Generalised Predictive Controllers type, GPC,  [8] are designed 
for each subsystem ignoring the interactions. In the second step, the interactions are 
introduced with the SISO GPC controllers in the loops. The objective is to find a 
fuzzy compensator for the compensation of the interactions. Figure 3 represents the 
diagram of such an approach for a  2x2 system. 

a) The SISO GPC controllers: 
In predictive control, the problem is to find at each sampling period, the sequence  

control signals  that minimises the following objective function : 

( ) ( ) ( )[ ] ( )[ ]∑ ∑
= =

−+∆++−+=
N

j

N

Nj

u

jtujtrjtytJ
1

22

1

1ˆ λ                          (3) 

where )(ˆ jty +  is the prediction of the output computed with a prediction model 
over an ouput prediction horizon N, r(t+j) is the reference signal, )( 1jtu −+∆ the 
future control increment with )()()( 1tututu −−=∆ , Nu the control horizon  such 
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Figure 1.  Compensation of interactions structure 

FCI

that: ∆u(t+j-1)=0 and λ a weighting factor. In the case of generalized predictive 
control GPC, the prediction model is a CARIMA model: 

A(z-1)y(t)=B(z-1)∆)u(t-1)+C(z-1)e(t)                                                                  (4) 

A(z-1),  B(z-1),  C(z-1) are polynomials in the unit delay operator  z-1 . The role of 
the ∆=1- z-1 is to ensure integral action of the controller. The first element u(t) of the 
control signal is applied to the system. 

b) The Fuzzy compensator of interactions 
 The technique of compensation is based on a feedforward control. The control 

signals output from the controllers are injected into the compensator to produce the 
two compensating signals, the final control is equal to a weighted sum of the two 
signals: SISO controllers and signal from the fuzzy compensator. The optimisation 
of the parameters of the compensator and weightings w1, w2 is realized by the mul-
tiobjective genetic algorithms. For a two dimensions system, two inputs and two 
outputs, the structure of the compensator is given by the following rules:  

                                         if   Ugpc1 is Ai1 then Uc1=Pi1Ugpc1   

                                         if   Ugpc2 is Ai2 then Uc2=P’i1Ugpc2                                         

UGPC1 and UGPC2 are the outputs of the SISO controllers GPC [8], and thus the 
inputs to the compensator, UC1 and UC2 are the outputs of the fuzzy compensator, Ai1 
and Ai2,  i=1… M are the fuzzy sets associated linguistic variables UGPC1 and UGPC2. 
These sets will be isosceles triangles uniformly distributed on the universes of  dis-
course.  

 
The two control signals will be then: U1=(UGPC1+UC2)w1 ;  U2=(UGPC2+UC1 )w2; 
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3.2 Description of the parameters optimisation algorithm 

The multi objective genetic algorithm, MOGA, is used to determine the parame-
ters of the fuzzy compensator: the length of the universes of discourse of the input 
variables of the fuzzy compensator, the parameters of the consequences and to re-
fine the parameters of single-variable  controllers GPC. Note that since the distribu-
tion of the fuzzy sets is uniform, it is only necessary to determine the length of the 
universe of discourse. In the case of a two inputs two outputs system, the two objec-
tive functions to be minimised by  the MOGA are: 

( )∑
=

=
T

1i
11 ief  , ( )∑

=
=

T

1i
22 ief                                                  (5) 

T is the simulation time which must be sufficiently long so as the problem can be 
considered as an optimal control problem with infinite horizon and  thus guarantees 
that the optimal solution if it exits is stable. 

Optimisation is carried out off line and in closed loop with the controllers and the 
fuzzy compensator of interactions in the loop.  The variables included in the optimi-
sation are: the widths of the universes of discourse, the parameters of SUGENO, the 
weighting vector, the output prediction horizons of the SISOGPC and the weighting 
factors λ . This set of  variables  forms the chromosome. 

The optimisation process goes along the following steps: 
1- Initialisation : Generate randomly an initial population of chromosomes 
2- For each chromosome (namely the set of variables included in the optimisa-

tion) compute the fitness as follows:  construct the associated closed loop system 
with SISO GPC and Fuzzy compensator. Simulate this system from t=0 to t=T and 
compute the cost functions according to (5). 

Apply ranking to the current population as described in section 2.3 above 
3-   Apply SGA to the ranked population 
4- If the stopping criterion satisfied stop extract the best solution in last genera-

tion otherwise return to 2. The stopping criterion is usually a maximum number of 
generations. 

4. Results of simulation  

In this section, we present the simulations which were carried out in order to test 
the method introduced. The selected system is a binary distillation given as refer-
ence model in 1991 by Limebeer [3] with strong interactions. It is described by the 
following model: 

1

2

1 1 1

2 22

( ) 00.878 0.8641    
( ) 1.082 1.09675 1 0

p

p

Y p k e U
Y p Up k e

θ

θ

⎡ ⎤−⎡ ⎤ ⎡ ⎤⎡ ⎤
= ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥−+ ⎢ ⎥⎣ ⎦⎣ ⎦ ⎣ ⎦⎣ ⎦

    (6) 

Y1(p) and Y2(p) are the concentrations of the products, the inputs U1(p) and U2((p) are 
the reflux and vapour boilup. θi =1mn, k1=k2=1. The compositions are normalised 
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between 0 and 1. The references are r1(t) for y1(t) and  r2(t) for y2(t). The objective is 
to design a controller for the multivariable system that must satisfy the following 
robustness performances when the gains k1 and k2 vary between 0.8 and 1.2:  

-For a reference r1 (t)=1 (r2(t)=1) we must have 
21ty90 1 .)(. ≤≤ ( 21ty90 2 .)(. ≤≤ ) 

- For reference r1 (t)=0 (r2(t)=0) we must have 40ty1 .)( ≤ ( 40ty2 .)( ≤ )   

These are to be satisfied for all 0t ≥  

The design of controllers GPC is done for the two following subsystems:  
The MOGA is used to find the following parameters:  

For the SISO GPC, the objective is to refine the parameters  N1 and N2    the pre-
diction horizon for the two subsystems,  λ1 and λ2 the weighting factors for the two 
subsystems. We set to one both control horizons Nu1 and Nu2. 

For the fuzzy compensator of interactions: p11, p12, p13, p21, p22, p23 , g1 and g2 
and weightings factor: w1, w2 . 

The cost functions to be minimized by the MOGA are:  
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e1(t) and e2(t)  are the cumulated errors on outputs 1 and 2. 
The results of the MOGA optimisation procedure  are presented in table I.  

Table I : Optimal parameters 

Parameters Values 
Parameters of  Sugeno P11= -0.80107 ; P12= 0.7078 ; P13= -0.5388 
Universe of discourse g1 = 378.1355 ; g2 = 484.8989 
Parameters of GPC SISO1 N21 = 16;  λ1 = 0.6894 ; Nu1 = 1  
Parameters of GPC SISO2 N22 = 16 ;  λ2 = 0.1215 ; Nu2 = 1  
weighting Vector  W1 = 2.367  ; w2 = 2.550 

 
The optimal parameters find by the MOGA are given in table I. Figures 2 (a) and 

(b) show the results of the simulation of SISO control GPC without compensation of 
the interactions. It is seen that the responses are very sluggish and the compositions 
does not reach their references even at time 100 minutes. Figures 3, 4, 5 and 6 show 
the results of the control GPC with the fuzzy compensator of interactions for the 
nominal case k1=1 and k2=1. It is noticed that the effect of the interactions is practi-
cally eliminated. In order to check if the robustness performances are satisfied, the 
GPC controllers with the fuzzy compensator are tested for the extreme gains namely 
a variation of   ±10%. Figures7, 8, 9 and 10 show the result of these simulations. The 
stability is preserved but the performances are slightly degraded. This is shown in 
figure 7 for the reference r1(t)=1 and r2(t)=0 with gains k1=0.8 and k2=1.2  where 
the output y1(t) reaches 1.25. In figure 9, the degradation concerns also y1(t) which 



A Fuzzy Compensator of Interactions for a Multivariable GPC  − K. Lamamra et al.     243 
C

op
os

iti
on

1 
( y

1)
 

0 1
00 

0
.2 

0
.4 

0
.6 

0
.8 

Time (min) 0 1
00 

0
.2 

0
.4 

0
.6 

0
.8 

Time (min)

C
op

os
iti

on
2 

( y
2)

 

C
op

os
iti

on
1 

( y
1)

 

0 1
00 

0
.1 

0
.2 

0
.3 

0
.4 

Time (min) 
0 1

00 

0
.2 

0
.4 

0
.6 

0
.8 

Time(min)

C
op

os
iti

on
2 

( y
2)

 

overshoots up to 0.8   for the case r1(t)=0 and r2(t)=1 with the same gains. In figure 
10, the output y2(t) reaches 1.25. Remarkably however, the performances are main-
tained for the case  k1=0.8 and  k2=1.2. 

5. Conclusion 

A technique for the design of multivariable controllers has been introduced. It is 
based on the principle of decoupling by compensation of the interactions. In a first 
stage, the interactions are ignored and of the controllers are designed for the result-
ing SISO subsystems. In a second stage, a fuzzy compensator having as inputs the 
outputs of the SISO GPC controllers produces signals of compensations. These 
which be added to the GPC control signals, with effect to minimize the effect of the 
interactions while acting feedforward. The solution uses the genetic algorithms 
multiobjective to find one quasi optimal compensator. The approach is relatively 
simple to design. The method is applied in simulation to a binary distillation col-
umn. The results show a good compensation of interactions for the nominal case and 
a robustness withy respect to stability with a slight degradation of the performance. 
 

 

 

 

 

(a) 

 

 

(b) 
Figure 2: SISO controller  without compensation   (a) reference (0,1) and (b) reference (1, 0) 
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Figure  3 : The output y1 for refer-
ences   (1,0) and gains (k1=1; k2=1) 

Figure 4: The output y2  for refer-
ences   (1,0) and gains (k1=1; k2=1) 
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Figure 7: The output y1 for ref-
erences  (1,0) k1=0.8 ; k2 =1.2 and 

Figure 8: The output   y2  for  
references (1,0) and k1=0.8 ; k2 
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Figure 5: The output y1 for refer-
ences  (0,1) and gains (k1=1; k2=1) 

Figure 6 : The output y2  for refer-
ences   (0,1) and gains (k1=1; k2=1) 
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Figure 7: The output y1 for references  
(1,0) k1=0.8 ; k2 =1.2 and k1 =1.2, k2 =0.8

Figure 8: The output   y2  for  references (1,0)  
       k1=0.8 ; k2 =1.2 and  k1 =1.2, k2 =0.8 

Figure 9: The output y1 for references  (0,1) 
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Figure 10: The output y2 for  references (0,1)  
     k1=0.8 ; k2 =1.2 and k1 =1.2, k2 =0.8 

  


