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Abstract—Based on the bifurcation diagram technique, this 
paper analyses the stabilization conditions of the nonlinear 
chaotic Genesio-Tesi system with the use of a fractional order 
control scheme. Stability analysis is performed for the closed-
loop nonlinear chaotic system behavior, for the fractional 
order integral and derivative actions by mean of the 
bifurcation diagram. Numerical simulation examples illustrate 
the efficiency of the proposed state feedback controller with a 
fractional order PIλDµ control structure, allowin the 
stabilization of the problem of unstable fixed points with good 
closed loop system performance. 
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I.  INTRODUCTION  
Fractional order control solutions are gathering more and 

more research efforts nowadays mainly because of the 
emergence of numerical tools to deal with the fractional order 
differential and integral equations [1,2]. In order to improve 
the performance of linear feedback systems, Podlubny [3] 
generalized the classical PID controller to the PIλDμ form 
called fractional order PID, which has recently become very 
popular because it offers supplementary flexibility to deal with 
more complicated design specifications. Since, fractional order 
PID (FOPID) controllers have counted a wide range of 
practical applications in several power systems as cited in the 
following. In [4, authors deal with the design of fractional 
order PID controller applied to integer as well as fractional 
plants. In [5], a FOPID is designed for the hydraulic turbine 
regulating system (HTRS) system for concurrent performance 
exigencies. Besides that, a comparative study concerning PID 
and FOPID controllers illustrates the superiority of the 
fractional ones in performance and robustness. In [6], a 
Fractional-Order PID is designed for ship roll motion control 
with the use of chaos embedded PSO algorithm. In [7], 
optimum tuning of fractional order PID controller for AVR 
system using chaotic and swarm optimization technique. 
Authors in [8] consider the fractional order high gain adaptive 
control strategy with augmented tuning parameters for the 

performance enhancement of the closed loop control system. 
Whereas in [9] a fractional differentiator-based controller is 
proposed to suppress chaos in a 3D single input chaotic system 
by stabilizing some of the fixed points. 

Chaotic systems are also affected by the fractional order, 
either modeling or control or both. Many famous fractional 
order systems, such as Rossler system, Lorenz system, Chua’s 
circuit, Duffing system and so on, have been studied [10-12]. 
In view of the fact that fractional calculus provides another 
good way to describe, predict and control physical systems 
accurately, it has been applied to control system, physics and 
system modeling [13,14]. We cite for example in [15], the 
control of chaos in the fractional nonlinear model of Chen-
type by mean of a state space linear feedback control.   

In this work the problem of chaos stabilization is considered 
for the case of Genesio-Tesi-type system which was 
introduced by Genesio and Tesi since more than two decades 
[16]. Stability analysis of the nonlinear chaotic system is 
studied for the fractional order integral and derivative actions 
using the bifurcation diagram. The fractional PIλDµ controller 
is implemented by mean of the Adams-Bashforth-Moulton 
method and results show the ability of the proposed simple 
control strategy to perform the desired stability, based on the 
fractional order integral action. 

The remaining sections are organized as follows: Section II 
presents basic definitions of fractional order integrals and the 
Fundamental Predictor-Corrector Algorithm for numerical 
integration of fractional order differential equations. The 
nonlinear chaotic Genesio-Tesi system is introduced in section 
III. In section IV, the fractional PIλDµ controller is presented, 
and in section V the stabilization problem is studied for 
different control actions. Concluding remarks are given in 
section VI. 

 

II. APPROXIMATION OF FRACTIONAL OPERATOR 
Research in fractional calculus goes three centuries back in 

history. The principle theory was initiated mainly around 
definitions of fractional derivative and integrals. Many 
reference books [17-18] retrace these mathematical 
developments. Applications of such concepts in automatic 
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control were promoted more recently attracted by the special 
properties available in fractional order models [1,19].  

A. Basic definitions 
One of the commonly used definitions of the fractional 

order operators is the Riemann-Liouville (R-L) [17].  
The R-L integral of order λ>0 is defined as: 
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and the expression of the R-L fractional order derivative of 
order μ>0 is: 
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with Г(.) is the Euler’s gamma function and the integer n is 
such that (n-1) < μ < n. This fractional order derivative of 
equation (2) can also be defined from equation (1) as: 
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B. The Fundamental Predictor-Corrector Algorithm 
Now a definition of the fractional Adams-Bashforth-Moulton 
method introduced in [20] is given; as we shall later use it to 
approximate the fractional order integral operator. In fact it is 
more practical to use a numerical fractional integration method 
to compute fractional order integration or derivation as the 
approximating transfer functions are of relatively high orders. 
Consider the differential equation 
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     ,1,,1,0,)0( )(

0
)( −== mkyy kk

                     (5) 

where ][α=m  and the real numbers 
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given. 
The basics of this technique take profit of an interesting 
analytical property: the initial value problem (4), (5) is 
equivalent to the Volterra integral equation 
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Introducing the equispaced nodes jht j =  with some given 

0>h  and by applying the trapezoidal integral technique to 
compute (6), the corrector formula becomes 
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III. CHAOTIC GENESIO-TESI SYSTEM 
Genesio-Tesi system is defined by the following 

mathematical model 
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When ( ) ( )6,992.2,2.1,, =cba  [21], the Genesio-Tesi 
system presents a chaotic behavior as shown in Fig. 1. Initial 
conditions are the same in [21]: ,0032.1)0( −=x  

3445.2)0( =y and 087.0)0( −=z . 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
Fig. 1.  Phase plane of chaotic Genesio-Tesi system 
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Many researchers have been attracted by the problem of control 
and synchronization of Genesio-Tesi nonlinear system [22]. 
They proposed different strategies for that aim such as adaptive 
control [23], LMI optimization approach [24], sliding mode 
control [25], single variable feedback control [26] …etc. 

 

IV. FRACTIONAL PID CONTROLLER 
In this section, the proposed fractional calculus-based 

control strategy that is able to suppress chaotic oscillations in a 
Genesio-Tesi single input three state chaotic system is 
presented. The considered control strategy is a fractional order 
PID-like controller (FOPID) as a state feedback mechanism 
[3]. A FOPID controller calculates an error value and tries to 
minimize it by adjusting the process using a manipulated 
variable. In owner study we have selected each action 
separately. 

The Genesio-Tesi system model is given by: 
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A. Fractional proportional-integral controller 
The control law is expressed by the formula,     
                                                                                     

                        XIkXktu Ip
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where λ   is the fractional order.  
For a suitable choice of pk  and Ik  gains we use the 

bifurcation diagrams presented in fig. 2 and fig. 3. First, we fixe 

Ik to 2, and traces the evolution of the x variable according to 

pk which varied between 0.5 and 0.85. Then, from fig. 2 we 
take one value from the interval that ensures stability of the 
system, and we seek to know the behavior of the system by 
varying Ik  between 1 and 3. In our case we took 65.0=pk  
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Fig. 2.  Bifurcation diagram x=f(kp) Bifurcation diagram x=f(ki) 
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Fig. 3.  Bifurcation diagram x=f(ki) 

B. Fractional proportional-derivative controller 
The control law for the case of fractional proportional-

derivative control is given by the expression. 
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Where µ is the fractional order. 

Here, we use also bifucation diagram presented in fig. 4  to 

determine the gain dk . Always keeping 65.0=pk . 

 

 

 

 

 

 

 

Fig. 4.  Bifurcation diagram x=f(kd) 

C. Fractional proportional-integral-derivative controller 

The fractional proportional-integral-derivative controller 
applied on Genesio-Tesi system can be schematized as follow. 

 
 

 

 

 

 

 

Fig. 5.  Controlled system  using FOPID 
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V. SIMULATION RESULTS 
 
In this part, we provide the numerical results to illustrate 

the effectiveness of the regulator designed to deal with this 
class of nonlinear systems. Since direct implementation of the 
fractional order transfer functions is problematic, to 
implement these transfer functions, integer order 
approximations of the fractional transfer functions can be used 
in practical applications [27]. The fractional Adams-
Bashforth-Moulton method is used for numerical 
approximation of the control system using Matlab/ Simulink.  

 
 

A. Using  λPI  controller

 

 
 
The stabilization of the chaotic system on a fixed point or 

periodic orbit depends essentially on the choice of pk  and ik  

gains.  For ( pk , ik ) = (0.65, 2), the simulation result is 
presented in fig.6. The control is started at boot. 

 
Fig. 6.  State variables for ( pk , ik ) = (0.65, 2)  

 

 

 

 

 

 

 

 

 

Fig. 7.  PI controller signal 

 

After more than 6 second, the controller succeeded to 
stabilize the system on a periodic orbit presented clearly in the 
phase plane by fig. 7. 

 

 

 

 

 

 

 

 

Fig. 8.  Phase plane y(t) vs. x(t) from the 10th second  

 

 

 

 

 

 

 

 

 

 

Fig. 9.  State variables of controlled Genesio-Tesi system with ( pk , dk ) = 

(0.65, 0.05)  

 

 

 

 

 

 

 

 

 

Fig. 10.  PD controller signal 
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B. Using  µPI  controller

 

 
 
From the bifurcation diagram shown in the fig. 4, is clearly 

seen that despite the smallness of dk  gain interval, system 
behavior changes between chaotic and stable states. 

From 066.0−=dk to 067.0=dk the system is stable. 
Applying the fractional proportional-derivative controller on 
Genesio-Tesi system with 05.0=dk , the results shown in 
fig.9 are obtained. 

Here, the control is triggered at instant 5=t sec. The 
system converges abruptly towards the unstable fixed 
point ( )0,0,0 . 

 
C. Using  µλDPI  controller

 

 
 

Obtained result using  µλDPI  controller is presented in 
fig.11. 

 

 

 

 

 

 

 

 

 

Fig. 11.  State variables with different 
dk  values  

 
 
 
 
 
 
 
 

 

 

 

 

Fig. 12.   Zoom of x  variable 

Here, the value of dk  that garantees the best performance of controller  with 

respect to the overshoot and the response time is 07.0=dk .   

VI. CONCLUSION  
In this paper, we propose a dynamic system, nonlinear 

complex Genesio-Tesi system, and study its dynamic 
properties. We consider the control and chaos suppression in 
this nonlinear chaotic system using of a fractional order 
control strategy. A linear fractional order state space feedback 
controller is designed for the chaotic system stabilization. By 
means of the bifurcation diagram and the phase portrait, the 
dynamic behaviors of system are depicted. In particular, the 
coefficients of the fractional order derivative and integral 
actions are considered as a bifurcation parameter. The 
proposed controller has a simple structure and can stabilize 
some fixed points in the single input 3D chaotic systems. 

Stability analysis of the nonlinear chaotic system is studied 
for the fractional order integral and derivative actions using 
the bifurcation diagram. We show by numerical simulations 
that the fractional PIλDµ controller provides a good closed loop 
system performance for stabilizing the problem of unstable 
fixed point. 
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