
State feedback control design for a class of

nonlinear systems

S. Hajji1,2, M. M’Saad2, M. Farza2, A. Chaari1, M. Kamoun1

19 février 2009
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Abstract : This paper deals with a state feedback controller for a class of
controllable and observable nonlinear systems with an admissible tracking ca-
pability. Two fundamental features are worth to be mentioned. The first one
consists in the high gain nature of the underlying state feedback control and
observer designs. More specifically, a unified high gain control design framework
is proposed thanks to the duality between control and observation. The second
feature consists in incorporating a filtered integral action into the control de-
sign. The filtering is mainly motivated by measurement noise sensitivity reduc-
tion while the integral action allows to achieve a robust offset free performance
in the presence of step like disturbances. An academic servo problem, involving
a nonlinear double integrator, is addressed to show the effectiveness of the pro-
posed control design method.

Keywords : Nonlinear system, Output feedback control, Admissible tracking
capability, High gain control, Sliding mode control, High gain observer, Filtered
integral action.

1 Introduction

The problems of observation and control of nonlinear systems have received
a particular attention throughout the last four decades (Agrawal and Sira-
Ramirez (2004), Gauthier and Kupka (2001), Isidori (1995), Nijmeijer and der
Schaft (1991), Krstič et al. (1995), Sepulchre et al. (1997)). Considerable ef-
forts were dedicated to the analysis of the structural properties to understand
better the concepts of controllability and of observability of nonlinear systems
(Hammouri and Farza (2003), Gauthier and Kupka (2001), Rajamani (1998),
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Isidori (1995), Gauthier and Kupka (1994), Fliess and Kupka (1983), Nijmei-
jer (1981), Gauthier and Bornard (1981) Fliess and Kupka (1983)). Several
control and observer design methods were developed thanks to the available
techniques, namely feedback linearisation, flatness, high gain, variable struc-
ture, sliding modes and backstepping (Farza et al. (2005), Agrawal and Sira-
Ramirez (2004), Boukhobza et al. (2003), Gauthier and Kupka (2001), Fliess
et al. (1999), Sepulchre et al. (1997), Fliess et al. (1995), Isidori (1995), Krstič
et al. (1995)). The main difference between these contributions lies in the de-
sign model, and henceforth the considered class of systems, and the nature of
stability and performance results. A particular attention has been devoted to
the design of state feedback control laws incorporating an observer satisfying
the separation principle requirements as in the case of linear systems (Mah-
moud and Khalil (1996)). Furthermore, various control design features have
been used to enhance the performances, namely the robust compensation of
step like disturbances by incorporating an integral action in the control design
(Seshagiri and Khalil (1996)) and the filtering to reduce the control system
sensitivity in the presence of noise measurements.

In this paper, one proposes a state feedback controller for a class of nonli-
near controllable and observable systems. More specifically, one will address an
admissible tracking problem for systems without zero dynamics, allowing the-
reby a comprehensive presentation of the proposed control design framework.
The state feedback controller is obtained by simply combining an appropriate
high gain state feedback control with a standard high gain observer (Gauthier
and Kupka (2001), Farza et al. (2005)). The state feedback control design was
particularly suggested from the the high gain observer design bearing in mind
the control and observation duality. Of particular interest, the controller gain
involves a well defined design function which provides a unified framework for
the high gain control design, namely several versions of sliding mode control-
lers are obtained by considering particular expressions of the design function.
Furthermore, it is shown that a filtered integral action can be simply incorpo-
rated into the control design to carry out a robust compensation of step like
disturbances while reducing appropriately the noise control system sensitivity .

This paper is organized as follows. The problem formulation is presented in
the next section. Section 3 is devoted to the state feedback control design with
a full convergence analysis of the tracking error in a free disturbances case. Sec-
tion 4 emphasizes the high gain unifying feature of the proposed control design.
The possibility to incorporate a filtered integral action into the control design
is shown in section 5. Simulation results are given in section 6 to highlight the
performances of the proposed controller.

2

State feedback control design for a class of nonlinear systems − S. Hajji et al. 749 



2 Problem formulation

One seeks to an admissible tracking problem for MIMO systems which dyna-
mical behavior can be described by the following state representation

{

ẋ = Ax+Bb(x)u+ ϕ(x)

y = Cx = x1
(1)

with

x =











x1

x2

...
xq











, ϕ(x) =















ϕ1(x1)
ϕ2(x1, x2)

...
ϕq−1(x1, . . . , xq−1)

ϕq(x)















(2)

A =

(

0 In−p

0 0

)

, B =











0
...
0
Ip











, C =
(

Ip 0p . . . 0p

)

(3)

where the state x ∈ ϑ an open subset IRn avec xk ∈ IRp, the input u ∈ U
a compact set of IRm with m ≥ p, b(x) is a rectangular matrix of dimension
p×m. This system is uniformly controllable and observable provided that the
following assumptions holds.

H1. The function b(x) is Lipschitz in x over ϑ and there exists two positive

scalars α and β such that for any x ∈ ϑ, one has α2Ip ≤ b(x) (b(x))
T

≤ β2Ip.

H2. The function ϕ(x) is Lipschitz in its arguments over the domain of
interest ϑ.

The control problem to be addressed consists in an asymptotic tracking of an
output reference trajectory that will be noted {yr(t)} ∈ IRp and assumed to be
enough derived, i.e.

lim
t→∞

(y(t) − yr(t)) = 0 (4)

Taking into account the class of systems, it is possible to determine the sys-
tem state trajectory {xr(t)} ∈ IRn and the system input sequence {ur(t)}
corresponding to the output trajectory {yr(t)} ∈ IRp. This allows to define an
admissible reference model as follows

{

ẋr = Axr +Bb(xr)ur + ϕ(xr)

yr = Cxr

(5)
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The reference model state xr ∈ IRn and its input ur ∈ IRm can be determined
as follows















x1
r = yr

xk
r = ẋr

k−1 − ϕk−1(x1
r, . . . , x

k−1
r ) for k ∈ [2, q]

ur = (b(xr))
+

(ẋr
q − ϕq(xr))

(6)

By assuming that the reference trajectory is smooth enough, one can recursively
determine the reference model state and input from the reference trajectory and

its first derivatives, i.e. y
(i)
r =

diyr

dti
for i ∈ [1, q − 1], as follows

xk
r = gk

(

yr, y
(1)
r , . . . , y(k−1)

r

)

for k ∈ [1, q]

where the functions gk are given by


















































g1 (yr) = yr

gk
(

yr, y
(1)
r , . . . , y

(k−1)
r

)

=
k−2
∑

j=0

∂gk−1

∂y
(j)
r

(

yr, . . . , y
(k−2)
r

)

y(j+1)
r

−ϕk−1
(

g1 (yr) , . . . , g
k−1

(

yr, y
(1)
r , . . . , y

(k−2)
r

))

for k ∈ [2, q]

(7)

The output tracking problem (4) can be hence turned to a state trajectory
tracking problem defined by

lim
t→∞

(x(t) − xr(t)) = 0 (8)

Such problem can be interpreted as a regulation problem for the tracking error
system obtained from the system and model reference state representations (1)
and (5), respectively.

{

ė = Ae+B (b (x)u (x) − b (xr)ur) + ϕ (x) − ϕ (xr)
em = y − yr

(9)

3 State feedback control

As it was early mentioned, the proposed state feedback control design is parti-
cularly suggested by the duality from the high gain observer design proposed
in Farza et al. (2005). The underlying state feedback control law is then given
by







ν (e) = −BTKc

(

λqS̄∆λe
)

u (x) = (b(x))
+ (

ẋq
r − ϕq (xr) + ν (e)

)

(10)
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where (b(x))
+

denotes the right inverse of the matrix b(x), which exists accor-
ding to H1, ∆λ is the block diagonal matrix defined by

∆λ = diag

(

Ip,
1

λ
Ip, . . . ,

1

λq−1
Ip

)

(11)

where λ > 0 is a positive scalar, S̄ is the unique solution of the the following
algebraic Lyapunov equation

S̄ +AT S̄ + S̄A = S̄BBT S̄ (12)

and Kc : IRn 7→ IRn is a bounded design function satisfying the following
property

∀ξ ∈ Ω on a ξTBBTKc(ξ) ≥
1

2
ξTBBT ξ (13)

where Ω is any compact subset of IRn.

Remark 3.1 Taking into account the structure of the matrices B et C and the
fact that the following algebraic Lyapunov equation

S +ATS + SA = CTC (14)

has a unique symmetric positive definite solution S (Gauthier et al. (1992)),
one can deduce that equation (12) has a unique symmetric positive definite
solution S̄ which can be expressed as follows

S̄ = TS−1T avec T =













0p . . . 0p Ip
... 0p Ip 0p

0p Ip 0p

...
Ip 0p . . . 0p













(15)

Using some useful algebraic manipulations as in Farza et al. (2004) yields

BT S̄ = CS−1T = [Cq
q C

q−1
q . . . C1

q ] (16)

The above state feedback control law satisfies the tracking objective (8) as
pointed out by the following fundamental result

Theorem 3.1 The state and output trajectories of the (1)-(3) subject to the
assumptions H1 et H2 generated from the input sequence given by (10)-(13)
converge globally exponentially to those of the reference model (5) for relatively
high values of λ.
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Proof. The state feedback control system can be written as follows

ė = Ae+Bν(e) + ϕ(x) − ϕ(xr)

= Ae−BBTKc(λ
qS̄∆λe) + ϕ(x) − ϕ(xr)

The result will be established from a Lyapunov function using the state vector
ē = λq∆λe and henceforth governed by the equation

˙̄e = λAē− λq∆λBB
TKc(S̄ē) + λq∆λ (ϕ(x) − ϕ(xr))

as ∆λA∆−1
λ = λA and ∆λB = 1

λq−1B, one can easily prove that V : ē 7→
V (ē) = ēT S̄ē is a Lyapunov function for the state feedback control system.
Equation (12) yields

V̇ = 2ēT S̄ ˙̄e

= −λV + λēT S̄BBT S̄ē− 2λēT S̄BBTKc(S̄ē) + 2λq ēT S̄∆λ(ϕ(x) − ϕ(xr))

= −λV − 2λ

(

ξTBBTKc(ξ) −
1

2
ξTBTBT ξ

)

+ 2λq ēT S̄∆λ(ϕ(x) − ϕ(xr))

where ξ = S̄ē. Using inequality (13), one obtains

V̇ ≤ −λV + 2λq ēT S̄∆λ(ϕ(x) − ϕ(xr)) (17)

In other respects, according to the Mean value theorem, one has

ϕ(x) − ϕ(xr) =
∂ϕ

∂x
(ζ)(x− xr) (18)

for some ζ ∈ ϑ . one obtains

‖∆λ (ϕ(x) − ϕ(xr)) ‖ = ‖∆λ

∂ϕ

∂x
(ζ)e‖

= ‖
1

λq
∆λ

∂ϕ

∂x
(ζ)∆−1

λ ē‖

≤ ‖
1

λq
∆λ

∂ϕ

∂x
(ζ)∆−1

λ ‖‖ē‖

Since ϕ is Lipschitz over ϑ, the matrix
∂ϕ

∂x
(ζ) is bounded over ϑ. Taking into

account the triangular structure of ϕ(x), such a matrix is lower triangular and

as a result the matrix ∆λ

∂ϕ

∂x
(ζ)∆−1

λ depends only on terms which are in 1/λ

and hence its norm is bounded by a constant which does not depend on λ for
λ ≥ 1. This leads to

2 λq‖S̄ē‖‖∆λ (ϕ(x) − ϕ(xr)) ‖ ≤ γV (19)
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where γ > 0 is a constant which does not depend on λ. Combining (17) and
(19), one obtains

V (ē) ≤ e−(λ−γ)tV (ē(0))

Remark 3.2 Consider the case where the state matrix structure is as follows

A =



















0 A1 0 . . . 0

0 0 A2
. . . 0

...
. . .

. . .
. . . 0

...
. . .

. . . Aq−1

0 . . . . . . 0 0



















where Ai ∈ Rp×p for i ∈ [1, q − 1] are invertible constant matrices. One can
easily show that the corresponding control law ν(e) in the expression of the
control law (10) is then given by

ν(e) = −λ

(

q−1
∏

i=1

Ai

)−1

BT ∆−1
λ Kc

(

S̄∆λΛe
)

(20)

with

Λ =























Ip 0 . . . . . . 0
0 A1 0 . . . 0
... 0 A1A2 0

...
...

. . . 0

0 . . . . . . 0

q−1
∏

i=1

Ai























(21)

To this end, let us consider the change of coordinates z = Λx, the system can
be rewritten as follows

{

ż = ΛAΛ−1z + ΛBb(x)u+ Λϕ(x)

y = CΛ−1z = z1
(22)

Taking into account the structure of the the system state realization as well as
the transformation matrix, one gets

7
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ΛAΛ−1 =

(

0 In−p

0 0

)

ΛB = B

(

q−1
∏

i=1

Ai

)

and CΛ−1 = C (23)

One hence recovers the structure of the considered class of systems, i.e. equa-
tions (1) to (3), and naturally deduces the expression of the state feedback
control law (20).

4 Particular design functions

The control law involves a gain depending on the bounded design function Kc

which is completely characterized by the fundamental property (13). Some use-
ful design functions are given below to emphasize the unifying feature of the
proposed high gain concept.

• The usual high gain design function given by

Kc(ξ) = kcBB
T ξ (24)

where kc is a positive scalar satisfying kc ≥
1

2
. Notice that the required

property is fulfilled over Rn.

• The design function involved in the actual sliding mode framework

Kc(ξ) = kcBB
T sign(ξ) (25)

where kc is a positive scalar and ’sign’ is the usual signum function. It
is worth mentioning that the required property (13) holds in the case of
bounded input bounded state systems. However, this design function in-
duces a chaterring phenomena which is by no means suitable in practical
situations.

• The design functions that are commonly used in the sliding mode practice,
namely

Kc(ξ) = kcBB
TTanh(k0ξ) (26)

where tanh denotes the hyperbolic tangent function and kc and ko are
positive scalars. One can easily shows that the design function (26) satis-
fies the property (13)for relatively great values of ko. More particularly,
recall that one has lim

k0−→+∞

Tanh(k0z̃) = sign(z̃).
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It is worth noticing that the choice of the design function Kc is not limited to
the functions presented above. Other expressions could be considered, namely
the inverse tangent function or any suitable combination of a usual high gain
design function with a sliding mode design function.

5 Incorporation d’une action intégrale filtrée

One can easily incorporate a filtered integral action into the proposed state
feedback control design, for performance enhancement considerations, by sim-
ply introducing suitable state variables as follows

{

σ̇f = ef

ėf = −Γef + Γe1
(27)

where Γ = Diag {γi} is a design matrix that has to be specified according to
the desired filtering action. The state feedback gain is then determined from
the control design model











ėa = Aaea + ψ(ea + xra) − ψ(xra)
+Ba (b(e+ xr)u(ea + xra) − b(xra)ura)

ya = σf

(28)

avec
ẏf

r = −Γyf
r + yr, σ̇

f
r = yf

r

ea =





σf

ef

e



 , xra =





σf
r

yf
r

xr





Aa =





0 Ip 0
0 0 Γ
0 0 A



 , Ba =





0p

0p

B





ψ(ea) =





0p

−Γef

ϕ(e)





Indeed, the control design model structure (28) is similar to that of the error
system (9) and hence the underlying state feedback control design is the same.
The output feedback control law incorporating a filtered integral action is then
given by

{

u(ea) = (b(êa + xra))
+

(ẋq
r − ϕq(xr) + ν(ea))

ν(ea) = −Γ−1BT
a Kac(λ

qS̄a∆aλΛea)
(29)

9
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avec

ea =





σf

ef

e



 (30)

∆aλ = diag

(

Ip,
1

λ
Ip, . . . ,

1

λq
Ip,

1

λq+1
Ip

)

(31)

Λ =

















Ip 0 . . . . . . 0
0 Ip 0 . . . 0
... 0 Γ 0

...
...

. . . 0
0 . . . . . . 0 Γ

















(32)

where S̄a is the unique symmetric positive definite matrix solution of the fol-
lowing Lyapunov algebraic equation

S̄a + S̄aĀa + ĀT
a S̄a = S̄aB̄aB̄

T
a S̄a (33)

and Kac : IRn+2p → IRn+2p is a bounded design function satisfying a similar
inequality as (13), namely

∀ ξa ∈ Ω on a ξT
a BaB

T
a Kac(ξa) ≥

1

2
ξT
a BaB

T
a ξa (34)

where Ω is any compact subset of IRn+2p.

It can be easily shown that the resulting output feedback control system is
globally stable and performs an asymptotic rejection of state and/or output
step like disturbances.

6 Illustrative example

Let consider an academic servo problem for the nonlinear double integrator
described by















ẋ1 = x1 + d1sin(x1) + v(t)

ẋ2 = −d2x
3
2 + (2 + tanh(x2))u

y = x1

where d1 = d2 = 1 are constant parameters, v(t) is a step like disturbance
with unitary magnitude occurring over the time interval [27, 60] and γ(t) is a
zero mean measurement noise of variance 0.001. The desired output reference

10
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trajectory is generated from a second order generator with unitary static gain
and two equal poles p1 = p2 = −0.8 which input sequence is shown by the
figure 1. The involved servo system is based on the proposed output feedback
control with a filtered integral action as follows



























































































σ̇f = ef

ėf = −γef + γe1

u(e) =
1

1 + tanh(x2)

(

ẋ2
r +

(

x2
r

)3
+ ν(e)

)

ν(e) = −
kc

γ
tanh(ko

(

λ4σf + 4λ3ef + 6γλ2e1 + 4γλe2
)

ε1 = x1 − y

e1 = y − yr

e2 = x2 − x2
r

x2
r = ẏr − sin(yr)

ẋ2
r = y

(2)
r − ẏrcos(yr)

0 10 20 30 40 50 60 70
−1.5

−1

−0.5

0

0.5

1

1.5

INPUT OF THE SECOND ORDER FILTER 

Fig. 1 – The reference generator input sequence

An intensive simulation study has been made using all the design functions
that has been described above. As the performances were almost comparable,
one will present only those obtained with the design function given by the ex-
pression (26). The design parameters have been specified as follows

kc = 0.5; ko = λ = 5; γ = 0.01;

Le premier ensemble de résultat est donné par la figure 2 et il a été obrenu avec
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les valeurs nominales des paramètres d1 = 1 et d2 = 2. Le deuxième ensemble
est donné par la figure 3 et il a été obtenu avec des erreurs de 100 % qui ont
été intentionnellement introduites sur les valeurs de chacun des paramètres d1

et d2, i.e les valeurs de d1 = d2 = 2ont utilisées dans le modèle sans chan-
ger l’expression de la commande. Sur chacune des figures 2 et 3, nous avons
présenté l’évolution du comportement d’entrée-sortie du système ainsi que l’
erreur de poursuite. Par ailleurs, la perturbation a été bien rejetée dans les
deux cas et les comportements en sortie sont relativement bien filtrés avec la
fonction de synthèse et l’action intégrale filtrée considérées. On notera aussi le
bon comportement du système de commande vis-à-vis de fortes variations sur
les paramètres du modèle.

7 Conclusion

In this paper, a unified high gain state feedback control design framework has
been developed to address an admissible tracking problem for a class of control-
lable and observable nonlinear systems. Thanks the duality from the high gain
system observation, a framework has been particularly suggested. The unifying
feature is provided through a suitable design function that allows to redisco-
ver all those well known high gain control methods, namely the sliding modes
control. A Lyapunov approach has been adopted to show that the required
tracking performances are actually handled.

Of practical purpose, a filtered integral action has been incorporated into the
proposed control design to deal with step like disturbances while ensuring an
adequate insensitivity to measurement noise. The effectiveness of the propo-
sed state feedback control method has been emphasized throughout simulation
results involving a nonlinear double integrator subject to state step like distur-
bances.
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Fig. 2 – Nominal performances
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Fig. 3 – Robust performances
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