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ABSTRACT. In this paper, we develop a recursive parametric
estimation algorithm of time-varying systems, based on the Kalman
filter. In order to be effective, this algorithm requires an exact
knowledge of the parameters noise variance-covariance matrix and
the measurement noise variance. Here, we consider that the last
variable is known and constant, and the parameters noise variance-
covariance matrix is unknown and/or time-varying. For estimating
this matrix, we develop an estimation new method based on the
fuzzy logic theory. A numeric simulation example is treated in order
to validate the performances of the proposed method.
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1. Introduction

The control of a dynamic system requires the determination of the inputs and the
outputs of this system, the development of a mathematical model describing the
system and finally the structural and parametric identification of this model.

An input-output mathematical model is the most often an approximation of the
relations that exists between the characteristic parameters of the system. The stage
of identification includes two parts: structural estimation and parametric estimation.
The structural estimation permits to specify the structure of the model to adopt.
Whereas the parametric estimation permits to determine the value of the different
parameters intervening in the mathematical model. In this paper, the structure of the
model is supposed known and we are interested only on the parametric estimation.

Notice that in several types of industrial applications, the real physical systems
are with time-varying parameters or are submitted to externs and/or interns
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disturbances which can be assimilated to variations of the model parameters. In
general, the hypothesis of constant parameters is made only for the simplicity
purpose of the estimation problem.

The estimation of the systems with time-varying parameters is a theme of
actuality research. Recently, several researchers were interested in the analysis and
the synthesis of the parametric estimation schemes that can be applied to this kind of
systems. In the same way, various papers have been developed which are based on
the introduction of weight terms in the computing procedure of the adaptation gain
([5], [10], [12] and [13]). Among the parametric estimation methods of the time-
varying systems proposed in the literature, we are interested, thereafter, to the
method using the Kalman filter that is developed extensively ([7], [14] and [22]).
The advantage of this method consists in determining estimated values of the system
variables when the environment presents random disturbances. But, the major
problem of the practical implantation of the Kalman filter is the selection procedure
for the filter parameters. It has been shown that insufficiently known a priori filter
parameters can reduce the precision of the estimated filter states or introduces biases
to their estimates. In addition, incorrect a priori information can lead to practical
divergence of the filter [8]. Among the Kalman filter parameters, we can distinguish
the parameters noise variance-covariance matrix Q(k) and the measurement noise

variance o~ . Here, we consider that the variance ¢ is known and constant, and the
parameters of the matrix Q(k) are unknown and/or time-varying.

In this paper, we are interested in the development of an estimation method of
this matrix, which is used in the calculation of the adaptation gain for the estimation
algorithm. The similar problematic has been treated by Abid and Kamoun [2].

This paper represents, in a first time, a recursive parametric estimation algorithm
of no-stationary systems, based on the Kalman filter. In a second time, we give the
earlier methods for estimating Q(k) then the new method using the fuzzy logic. In

order to validate the performances of the proposed method, a numeric simulation
example will be treated in the last part.

2. Parametric estimation

The parametric estimation constitutes an important phase in the definition of the
mathematical model. Indeed, it permits to determine, from the input-outputs
information of the system, a mathematical model of an a priori fixed class, that
submitted to the same solicitations of the initial system, must give equivalent results
considering the aimed objectives and the expected precision.

When, we develop a mathematical model, Two categories are generally
distinguished: the stationary models, where the parameters and the structure of these
models are considered constant, and the no stationary models, where the no
stationarity can be originated from variation of the parameters, the delay or the order
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of the system. In this paper, we will only consider the case of no stationarity with
respect to a variation of the parameters.

The input-output mathematical model, allowing the description of a physical
system with time-varying parameters operating in a slightly noisy environment, can
be represented by the following equation:

Al k)y(k) = B(q" ku(k) +e(k) M

where {e(k)} is a sequence of independent random variables with zero mean and
finite variance o, representing the whole disturbance acting on the system. u(k)
and y(k) represent, respectively, the input and the output of the system at each

discrete time k. A(¢™',k) and B(g',k) are time-varying polynomials which are
defined by:

Alg™ k) =1+a,(k)g +..+a,(k)g”" )
and
B(q™ k)=b(k)g" +---+b,(k)g™" (3)

The polynomials A4(q™',k) and B(g™', k) are assumed to have the same degree
n . This assumption is made for the purpose of simplicity.

The equation (1) corresponds to an input-output, linear, monovariable mathematical
model of noisy DARMA type (Deterministic Auto-Regressive Moving Average).
The proposed problem consists of finding the parameters a,(k) and b,(k),

i=1,...,n intervening in this mathematical model at each discrete time & .

For the parametric estimation of the systems described by input-output
deterministic mathematical models, we can use the Recursive Least Squares RLS
algorithm. The goal of the formulation of this algorithm is to find the new
parameters estimated at discrete time £ from those at time £ —1.

It is important to underline that the different types of recursive estimation
algorithms formulated for the estimation of the systems with constant parameters
cannot be used to the systems with time-varying parameters.

Note that the main element in the structure of a recursive estimation algorithm
corresponds to the adaptation gain. In general, the computing procedure of the
adaptation gain implies a decreasing value of this gain. Thereafter, at the time of a
parametric variation, this gain doesn't allow the estimation algorithm to make some
corrections in due time in order to assure a better quality of estimation.

Besides, it is discriminating to reconfigure the recursive estimation algorithms in
order to prevent the adaptation gain matrix from tending to zero and be come
susceptible to follow the parametric variations. We can mention two types of
algorithms which can attain this objective:
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« recursive least squares estimation algorithm with forgetting factor,
e recursive estimation algorithm based on the Kalman filtering.

The modified version of the RLS algorithm consists of introducing a forgetting
factor A in the recursive calculation of the adaptation gain matrix. However, the
value of A must be chosen while respecting the following condition: 0 <A < 1. The
choice of the value of the forgetting factor A constitutes a major problem since there
are not any universal analytic methods to follow. Indeed, a bad choice can lead
estimation to a failure.

The RLS algorithm lacks directional possibilities in the update of the parameters,
due to a scalar A serving as the single design variable for this algorithm. This
disadvantage has been clearly illustrated by several authors (e.g. [15]). However,
since it seems possible that different parameters exhibit different time-variant
characteristics, the estimation method based on the Kalman filter is more interesting.

3. Parametric estimation algorithm based on the Kalman filter

The Kalman filter is an estimator of the state variables of dynamic systems capable
to be described by linear state models operating in a stochastic environment. The use
of the Kalman filter for the parametric estimation requires the representation of the
parameter vector with a state model.

Indeed, the output of the mathematical model given by the equation (1) can be
expressed in the following compact form:

y(k) = 0" (k)y(k)+e(k) “

where 0(k) is the vector of time-varying parameters and y(k) is an observation
vector, which are given respectively by:

0" (k) =[a,(k)--a, (k)b (k) -+ b, (k)] )
=[6,(k)---6,, (k)]

v (k) =[=y(k =1 = y(k=n) u(k=1)--u(k -n)] (6)

Generally, the default description for the parameter variation when no specific
information is at hand, is to model it as a process of Gauss-Markov, satisfying the
differential stochastic equation:

0(k +1) = ©O(k) + w(k) @)
where @ is a transition probability matrix supposed known and w(k) is a
disturbance vector. The elements of w(k) are sequences of independent random
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variables with zero mean and with time-varying variance-covariance matrix Q(k)
given by:

Qk) = E[ wik)w" (k) | ®)

where E denotes the expectation symbol.
While associating the equations (7) and (4), we get a state model permitting to
describe the system with time-varying parameters. In this case, 6(k) represent a

state vector and can be estimated using the Kalman filter approach. Such estimation
algorithm requires the knowledge of the system input signals u(k) and output

signals y(k) for several values of k, k=0,1,...,M . So, we must have an
information sequence /,, defined as: 7,, = {u(0),u(l),...,u(M); y(0), y(1),..., ¥(M)} .
From equations (5) and (7), it can be seen that the conditional distribution of
6(k+1) given [, is Gaussian with mean é(k+l) and covariance P(k+1).Then
the estimated parameters are given with the following recursive shape:

O(k +1) = DO(k) + L(k)e(k) ©)
with (k) is the prediction error given by:
e(k) = y(k)— 6" (k) (k) (10)
and L (k) is the Kalman gain defined as follows:

Pk —Dy(k)

L) =——
o+ (k)P(k—-1)y(k)

(11)

Pk =Dy(k)y" (k)P(k-1)

P(k)=®| P(k—1)-—>—F
C +y (b)P(k—-1y(k)

@' +0(k) (12)

The introduction of the variance-covariance matrix Q(k) in the equation of the
adaptation gain matrix P(k) permits to determine a prediction error gain L (k)
allowing the update of each respective parameter by each diagonal element of Q(k).
Due to Q(k) describes the variations in the parameters.

It is obvious that the practical implantation of this algorithm requires, in addition
to the knowledge of the initial conditions of the parameters vector and the adaptation
gain matrix, the knowledge of the values of Q(k) and the value of o”. Let us
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consider that 6> is known and constant, so we will be interested for estimating the
parameters of the matrix Q(k), which are unknown and/or time-varying.

4. Earlier approaches for estimating the matrix Q(k)

Several methods are used in order to estimate the variance-covariance matrix O of
the noise sequence acting on the state of the system. We can distinguish:

1- Bayesian estimation methods, which essentially assume that the values of the
unknown variances form a finite set with known probabilities of each value in the
set occurring [11];

2- correlation methods, which use the fact that the sequence of the prediction error
for a Kalman filter is a Gaussian white noise with zero mean [18];

3- covariance-matching methods, which strive to make the residuals consistent with
their theoretical values. The sequence of the prediction error is given by [17]:

E[& (k)| =y ()P(k=Dy(k)+c’ (13)

4- maximum likelihood methods, which are based on the maximization of some
density functions, for example ([17], [19],[20]):

F(GZ,Q)Z—lZ&

2FE[E 0] (1

The first approach changes merely the type of conception variables, i.e., the set
and the probabilities, for the filter. The second and the third approach rely on the
fact that the description of the variations in the parameters, by a state model, being
correct. This description supposes that the real system can be modelled as a
parametric combination of the chosen observation vector. However, for a real
system, the mathematical model can be valid only for the modelling goals, and
cannot be considered like an exact description of the system. For these reasons, the
ad hoc methods are generally adopted in parametric estimation.

Other works ([6], [9], [16], [21], [23] and [24]) are interested to develop an
adaptive filter, in order to adjust on line the variance-covariance matrix Q(k) so
called adaptive matrix. Among the estimation methods for Q(k), we can mention

the one that augments the state vector. In addition to representative variables of the
system, the state vector can be augmented with other variables which are estimated
by the filter. Indeed, in [3] the noise statistics are added to the state vector to
estimate the noise and to make an adaptive compensator.
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Thereafter, we propose an ad hoc method for the estimation of the matrix Q(k)
on line, using the fuzzy logic.

5. New approach for estimating the variance-covariance matrix

Under the assumption that the elements of w(k) are sequences of independent
random variables with zero mean, we can conclude that the corresponding variance-
covariance matrix is diagonal. Let us define the vector ¢ (k) as the vector of the
elements of the diagonal matrix Q(k). Letting ¢, (k) be the i™ element in q(k), we
can write :

O(k) = diag [, (k) q,(k) ... g,, (k)] (15)

Therefore, the objective is to elaborate a new approach, which estimates the
appropriate coefficients of the vector ¢ (k) at each discrete time k.

The idea repose on the fact that each diagonal element of the matrix Q(k)
influences on the adjustment of each corresponding model parameter. For the choice
of these matrix elements, we can notice the influence of the prediction error. Indeed,
a high value of the prediction error indicates the bad quality of the parametric
estimation, therefore, we must increase the Kalman gain by increasing the matrix
Q(k) . In addition, in a regulating strategy, it is required to derive some parameters
(parameter to adjust or an internal parameter) in order to represent their variations.
In fact, the variation of each estimated parameter is defined by:

A6, (k) =8, (k) -8, (k-1) (16)

with i=1,2,...,2n, indicates the system variation dynamic. If the variation of the

parameter él. (k) is large, the corresponding coefficient g, (k) must be chosen big
otherwise a small value of ¢, (k) suffice.

For these reasons, we will use an estimation strategy for each coefficient ¢, (k)

based on the evaluation of the two parameters: the prediction error and the variation
of the corresponding estimated parameter.

In our case, we have accurate information on the variables error and variation of
the estimated parameter at the discrete time &-1, but the facts to evaluate are vague.
To specify this empiric concept, we must use the formalisms permitting the
representation of the error and the variation of the estimated parameter, and
elaborate the methods permitting to manipulate them, for the estimation. In order to
avoid the problems of discontinuity in the systems with classic threshold, the theory
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of the fuzzy sets is recommended since it takes in account and solves this type of
problem. So the fuzzy logic theory will be used to manipulate these fuzzy sets [4].

Therefore, the objective is to elaborate a fuzzy system, which provides in output,
in each discrete time k, the appropriate coefficients of the vector g(k) from the
error (in absolute value) and the variation of the estimated parameters at the discrete
time k-1. The functional diagram of this fuzzy system is given by Figure 1.

Fuzzy system
ek —D)| . k
L q] ( )
28,(k 1) > Sub Fuzzy system 1
. P! Sub Fuzzy system 2 %, (k)
AB, (k-1
—» q(k)
AéZn ) : Sub Fuzzy system 2n 20 (K

Fig. 1. Functional diagram of the fuzzy system.

We obtain 2n sub fyzzy systems. Each sub system leans on fuzzy rules of
inputs-outputs type. Indeed, the output of this sub system g, (k) according to the

two inputs |8(k —1)| and Aéi (k—=1) is gotten with the rules manipulating the

linguistic variables of |8(k —1)| , Aéi (k—1) and g, (k). It is required to begin with
describing the input and output signals by the fuzzy language. This operation
requires the dividing of the variation domains for these signals in fuzzy sets. The
choice of these last has a considerable effect on the contribution of the fuzzy
estimation and only the experimental studies and in simulation can lead to
appropriate choice.

For the input signal |£(k - 1)| , it is necessary to determine membership functions

that value the relevance of the following facts: absolute value of the error is large
(L) and absolute value of the error is small (S), considering the situation described
by the numeric value for this signal. In the same way, we define the fuzzy
distribution of the variable, variation of the estimated parameter Aéi (k—1) that
associates its compatibility with the vague term that can be: positive (P),
approximate of zero (AZ) and negative (N). To accomplish the stage of
fuzzyfication, we define fuzzy sets for the output variable. We must take in account
that the matrix Q(k) must be chosen non-negative definite. Indeed, we choose a
subdivision for discourse domain of ¢, (k) in three fuzzy sets: small (S), medium

(M) and large (L). The membership functions for these fuzzy sets relative to
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|8(k —1)| , Aéi (k—1) and g, (k) , which are designed using a heuristic approach, are
shown in Figure 2.

Membership Membership

function function
A
1 S L N AZ G

>< l¢] Aé,

I J +»
—— >
@ (b)
Membership
function

(©)
Fig. 2. Membership function of: (a) |£(k - 1)| ;(b) Aéi(k —1) and (¢) ¢;(k).

Now, the step of inference consists in establishing the fuzzy rules of the kind:

IF <antecedent I> and <antecedent 2> THEN <consequent>,

where antecedent 1 is of the form |8(k - 1)| is {S ou L}, antecedent 2 is of the form

Aéi (k—=1) is {N, AZ ou G} and consequence is of the form ¢, (k) is {S, M ou L}.
The development of these rules leans, generally, on the experience and the ability
acquired by a human operator and on the theories of the parametric estimation
algorithms to use. Among which, the coefficient ¢, (k) should be chosen small

when the system variations are feeble in order to prevent against complicated
statistical properties estimation.

For each sub fuzzy system i, we elaborate six fuzzy rules that are represented by
the following inference matrix.

Table 1. Inference matrix for the inputs |£(k - l)| and Aé[(k —1) and the output ¢,(k) .

|e(k—1)
(k
q;(k) S I
N M L
A, (k ~1) Az ) M
P M L
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6. Illustrative example

In this paragraph, we treat a numeric simulation example in order to test the
performances of the recursive parametric estimation algorithm based on the Kalman
filter, using the estimated variance-covariance matrix determined by the fuzzy
method.

Let us consider a linear system, with time-varying parameters, which can be
described by the following mathematical model:

y(k) =—a,(k)y(k =1) = a, (k) y(k =2) +b, (k)u(k =1) + b, (F)u(k = 2) +e(k) ~ (17)

where y(k) and u(k) designate respectively the output and the input of the system
at the discrete time &, e(k) represent the disturbance acting on the measured output,
and q,(k), a,(k), b(k) and b,(k) are unknown and slightly time-varying
parameters defined as follow:

a,(k)=®,,a,(k—1)+w (k1)
a,(k)=®,,a,(k—1)+w,(k-1)
b (k) =®,b (k—D)+w,(k-1)
b,(k)=®,b,(k=1)+w,(k-1)

(18)

We assume that e(k) is a sequence of independent random variables with zero

mean and variance o .

The noise vector w(k) is given by:
wh (k) = [w (k) w, (k) wy (k) w, (k)] (19)

We suppose that the vector w(k) is constituted by a sequence of random

variables with zero mean and variance-covariance matrix Q(k).

For the estimation of the parameters a, (k), a,(k), b (k) and b, (k) , we apply the
estimation algorithm based on the Kalman filter (equations: (9), (11) and (12)). To
estimate the unknown and time-varying matrix Q(k), we utilize the fuzzy method
proposed in this paper. In order to evaluate the parametric estimation results
obtained with this method, we suppose, in a first time, that the matrix Q(k) is
known and constant. We apply, in a second time, an estimation method of Q(k)
using an auxiliary filter proposed in ([1] and [16]), that is one among the covariance-
matching methods.

For the practical implementation of this algorithm, we consider that the input
u(k) is a squared signal of level [+2,-2] and of period 20. This type of input signal
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has been selected so that it can continually excite the considered system in the whole
region of its working domain. The initial conditions of the algorithm based on the

Kalman filter are chosen as: 67 (0)=[0000], P(0)=1000/ and o> =0.02.

Indeed the transition  probability —matrix is  selected such as:
®=[05000;00300,0010;0000.09].

The objective of this example is to show the performances of the proposed
method for searching the matrix Q(k) and the capacities of the estimation algorithm

with Kalman filter using this matrix Q(k) in order to follow the variations of the
parameters a, (k), a,(k), b (k) and b, (k) during the time.

Figures 3 and 4 give the evolution curves, respectively, of the prediction error
e(k) and, as an example, the real and the estimated parameter b, (k) for known

QO(k), estimated Q(k) with the fuzzy method and estimated Q(k) with the method
using an auxiliary filter.

0.5 T T T T T T T 0.5 ‘ ‘ ‘ ‘ ‘ ‘ ‘v
| | | | | | |
041 = S B ) R E R 041 — Zy7.8y B e e e
O R ey
0.3 | | | | | | | 0.3 | | | | | | |
02l - 1o = T T T D B T 103 O e
| | |

|
|
0.1 — -
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-0.4,,,‘,,,,,,,,,,,,,,,,T,k,
205 I I I I I | I -0.
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(@) (b)

0 50 100 150 200 250 300 350 400
©

Fig. 3. Evolution curves of the prediction error €(k) for: (a) known Q(k) , (b) fuzzy Q(k)
and (c) estimated Q(k) with the auxiliary filter.
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Fig. 4. Evolution curves of the real and the estimated parameter b,(k) for: (a) known Q(k) ,
(b) fuzzy O(k) and (c) estimated Q(k) with the auxiliary filter.

The performances of the recursive parametric estimation algorithm based on the
Kalman filter with fuzzy estimation of the matrix Q(k) can be valued while
examining the obtained results of numeric simulations. We can notice that the plots
of the Figure 3 relative to the evolution curves of the prediction error €(k) for the
matrix O (k) known and the one estimated by the fuzzy method, indicate as well the
good quality of the estimation. Besides, the evolution curves of the prediction error
e(k) gotten for Q (k) estimated with the fuzzy method and the one estimated with

the auxiliary filter Figure 3, show as well that the quality of the estimation with the
fuzzy method is better. In the same way, the evolution curves of the real and the
estimated parameter b, (k) Figure 4, for O (k) known and the one estimated by the

two methods, enforce the same observation.

Then these results prove the efficiency of the ad hoc methods for the variance-
covariance matrix estimation with regard to the covariance-matching methods. In
conclusion, we can affirm that the matrix Q (k) is often unknown in engineering
applications of the kalman filter. In order to assure the convergence of the
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parametric estimation algorithm, we can estimate Q (k) by the method proposed
using the fuzzy logic.

7. Conclusion

In this paper, a recursive parametric estimation algorithm for the no-stationary
systems was developed, by using the Kalman filtering. We have studied the dynamic
systems that can be described by input-output models, linear, monovariable, with
time-varying parameters operating in a slightly noisy environment.

This parametric estimation algorithm is able to compensate the estimation errors
resulting from insufficient knowledge and/or variation of the noise statistics by
estimating, on line, the variance-covariance matrix of the noise. An estimation
method of this matrix has been proposed. This method leans on the fuzzy logic
theory for the evaluation of the prediction error and its variation at each time, in
order to settle on the value of the variance-covariance matrix.

The efficiency of this method has been tested on a numeric simulation example.
A comparison of the results has been given for a known variance-covariance matrix
and the one valued by the fuzzy method and by the method using an auxiliary filter.
The numeric simulation results obtained, indicate as well the efficiency of the
method proposed.
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