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Abstract: In this paper, the nonlinear sliding mode control (SMC) with 
mismatch disturbances is proposed. We treat the problem of control with this 
class of disturbances and the chattering phenomena. The proposed method 
attenuates the effect of both uncertainties, external disturbances and eliminates 
the chattering phenomenon introduced by classical sliding mode control. The 
model of a hydraulic system is used to test the suggested procedure. 

Keywords: Chattering phenomena, second order Sliding Mode Control, Three-Tank system 
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1. Introduction 

Variable structure control (VSC) results in high performance systems that are robust 
to parameter uncertainties and noise. Most of the early works in the area are in the 
Russian literature (see Utkin [17] and the references within). Subsequently, various 
VSC algorithms have been successfully used for trajectory tracking problems [1], [4], 
[8], [12] and [14]. Good results have been reported in eliminating external 
disturbances, addressing nonlinearities, and achieving acceptable control in the 
presence of modelling errors. A popular VSC approach for trajectory tracking 
problems is based on Lyapunov's method. This approach yields multivariable designs 
that produce sliding mode on the intersection of several switching surfaces. 

The control laws are designed so that the system trajectory always reaches the 
sliding surface. This is known as the reaching phase. Once on the sliding surface, the 
control structure is changed discontinuously to maintain the system on the sliding 
surface. At this stage, the system is in the sliding phase. The control law may be linear 
or nonlinear during the whole or parts of the control mission. Its structure changes 
according to a preselected switching logic. The switches in the control structure 
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depends on the instantaneous values of the system state along the trajectory, see [2], 
[3] and [8]. 

 High frequency control switching leads to the so-called chattering effect, which 
results in potentially harmful high frequency vibration of the controlled plant. Several 
methods have been proposed to overcome these difficulties; for example [15] 
proposed an interpolation of the control inside boundary layer, replacing in the 
expression of u the term sign (S) by sat(S). Our strategy consists in adding an integral 
corrector to the sliding mode control when the trajectory of the state goes into a 
boundary layer and approaches its reference. 

The matching condition assumption is unfortunately fairly restrictive and not 
satisfied by the majority of real-world systems. Hence the non-matching disturbances 
and uncertainties will affect the sliding mode dynamics and may cause unacceptable 
deterioration in the performance of some regulated output. Most of the references in 
the VSC literature such as Emelyanov et al [6] consider the stability of a nonlinear 
system with VSC where the output dependent nonlinearity is treated as a non-
matching disturbance, and Spurgeon and Davies [16] consider a modified VSC (to 
provide a continuous control and eliminate chattering) to achieve uniform ultimate 
boundedness in the neighbourhood of the ideal sliding surface for a class of 
unmatched uncertainty. More recently, a technique for constructing a storage function 
for a broad class of nonlinear passive systems with mismatched uncertainties has been 
proposed by Weiping [18]  

The paper is organized as follows: the non linear system model is presented in 
section two; section three and four describes the sliding mode control. Section five 
will be devoted to the experimental results. Finally some concluding remarks end the 
paper. 

2. Problem Statement 

We consider a nonlinear SISO controllable system given by 
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[ ] 2
21, ℜ∈Χ⊂= Txxx  is the state vector, ℜ⊂∈ Uu  is the control input to be 

bounded by 0Uu ≤ , ℜ→ℜ2
1 :f  and ℜ→ℜ2

2 :f  are continuous and smooth 

functions, we assume that 0
1

2 ≠
∂
∂
x

f
 and 0)( ≠xB , ℜ⊂∈Yy  is the output, 

2
21 ],[ ℜ⊂∈= Wwww T  represent the disturbances and parameter variations, where 

101 ww < , 202 ww <  and 202 dww <& . 

The design procedure for a state based sliding mode controller can be divided into 
two parts: 

Sliding mode control of nonlinear SISO  − S. Mahieddine Mahmoud et al.   351 

 

 

 



 

Step 1: Finding the switching function ℜ∈)(xS , such that the internal dynamics in 

the sliding mode are stable. 
Step 2: Designing a controller u, which ensures that the sliding mode is reached 

and subsequently maintained. 
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3. Sliding surface design 

The switching surface plays the major role in defining the reduced-order system 
dynamics. Many techniques have been devised for designing the switching surface. 
These techniques include: Filoppov’s method [7], Utkin’s equivalent control method 
[17], pole placement, and quadratic minimization methods. 

To achieve the robustness property with respect to unmatched disturbances and 
uncertainty parameters, the sliding surface should be designed such that: 

)~~()( 22 xxhtS sm += &τ  (3) 

where 0>smτ  is the time constant in sliding mode, 0>h  is a constant parameter 

and ryyx −=2
~ .is the output error. 

Definition 1. The system (1) is in presence of an unmatched disturbance, if the exists 
a disturbance w(t) such that the motion in the sliding mode of system (1) depends on 
the w(t). 

Notations The expression a1, a2, a3 and υ  are intermediate parameters given by 
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Theorem 1. Consider the sliding surface (3) and let us suppose that the trajectory of 

state reaches the surface in a finite time tr and confined to this surface 0)()( == tStS &  
for t>tr. 

Then, for all time rtt >  (tr is reaching time), the solution of (1) is given by 
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So, the output error converges exponentially to zero. 

Proof. At the surface 0)()( == xSxS & , we have  
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According to equations (5) to (1), for all rtt ≥ , the motions equations are of the form, 
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this means that (4) is well verified       

So, in the course of sliding mode, it is important that its output error 

(
)(
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sm

tt
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= τ ) depends neither on the parameter nor disturbance. 

From the theorem 1 and definition 1, the system (1) is a system with mismatch 
disturbance (x1(t) depend on the w2(t)). 
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4. Sliding Mode Control Design 

In the design of a Sliding Mode Control (SMC), there exist a number of approaches, in 
particular the method based on the selection of a Lyapunov function. The control 
should be chosen such that the following candidate Lyapunov function satisfies 
Lyapunov stability criteria: 

2

2

1
SV =  (7) 

The derivative of the Lyapunov function is negative definite, thus guaranteeing 
motion of the state trajectory to the manifold: 

0<= SSV &&  (8) 

The time derivative of S(x) is 
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The control input signal can be given as 

uuu c ∆+=  (10) 

where uc is the continuous control  
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and u∆ is the corrective control term  
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The constant K is chosen so that a sliding phase ( 0)( =xS ) occurs. 

According to (8) this implies 

001 dwwK smτ+>  (13) 

Then, after a finite time tr which depends only on the parametersmτ , the system state 

reaches the sliding surface.  

4.1 Smooth control interpolation in the boundary layer  

The continuous sliding mode control has been selected commonly in SMC problems 
to avoid chattering phenomena. To solve this problem, the signum function is 
replaced in (12) by a smooth function. Many functions have been used, introducing a 
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thin boundary layer around the sliding surface [15]. For example a saturation function 
has been used  
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where ϕ  is a positive constant, +∈ Rϕ . ϕ  defines the thickness of the boundary 

layer. 

4.2 Behavior inside the boundary layer 

The presence of a boundary layer is required to completely eliminate the chattering 
phenomenon. In order to have a robust feedback system, the use of a small ϕ  is 

needed, but a too small ϕ  will increase the chattering problem. Thus, it is very 

important to know the system behavior inside the boundary layer to be able to set an 
appropriate value of ϕ . 

4.2.1 Nominal system behavior in the boundary layer 

In this section we show that the sliding mode control algorithm guarantees the 
convergence of the nominal system to equilibrium point. 

Lemma 1. Consider the sliding surface (3) and the control input (10) with smooth 
function (14), for the nominal case (w1(t)=0 and w2(t)=0 ), we have 

0)(lim =
+∞→

tS
t

 (15) 

The convergence of y(t) to yr is guaranteed. 

Proof. In the nominal case, with the continuous sliding mode control, outside of the 
boundary layer, the derivative of the sliding surface is  
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In the boundary layer the derivative of S is  

( )
ϕ

)(tS
KtS −=&  (17) 
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K is a positive constant. The solution of expression (17) is given by 

( )rtt
K

r etSsigntS
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which implies (15) 
Then, the convergence of y(t) to yr is guaranteed. 

� 
The following figure (1) shows the trajectory of the sliding surface in the boundary 
layer. 
 

 

4.2.2 Uncertain and disturbed system behavior in the boundary layer 

Notation  Knowledge of the maximum disturbance bound is needed to design a 
sliding mode controller. The expressions of)(tε andξ  are used to simplify our 

analysis. ℜ∈)(tε  is defined by: 

)()()( 211 twtwat sm &τε +=  (19) 

ℜ∈ξ  is constant and defined such that: 

0201max1 dwwa smτξ +=  (20) 

Lemma 2. Consider the sliding surface (3) and the control input (10). If the 
parametric uncertainty and disturbance are bounded, then for all time rtt >  (tr is the 

reaching time to the boundary layer: )]([)( rr tSsigntS ϕ= ), then  the surface )(tS  is 

bounded inside the boundary layer: 

ϕ<)(tS
,
   rtt >∀  (21) 

)(tS  

t  
rt  ϕ  

ϕ−  
Trajectory with 0)0( <S  

Trajectory with 0)0( >S  

Fig. 1. Nominal system behavior in boundary layer. 
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Proof. For ϕ>),( txS  the system trajectories are guaranteed to converge to the 

boundary layer by the law (8), but when ϕ≤),( txS  the structure of control is 

changed and the )(sign S becomes
ϕ
S

, we have then: 
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Equation (22) is a first-order differential equation with a second member, the 
general solution to this equation for t>t r, is 
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Then 
ϕϕ <<− )(tS  

In the case 0)( <rtS , we have 
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Then  
ϕϕ <<− )(tS  

Thus, for all t>t r, S(t) is bounded such that 

ϕ<)(tS
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hence equation (21) of lemma 2 is satisfied. 
 

The system behavior is not determined inside a boundary layer (see figure 2); 
further convergence to zero depends on the parameter )(tε , equation (22). 

 

4.3 Integrator corrector in the boundary layer  

In order to solve a steady-state error problem, an integral sliding manifold was 
proposed in [5] and [13]. This development is introduced and justified only by tests 
on specific systems. Our idea consists in reconstituting a control law to eliminate the 
steady-state error created by the disturbance. We added an integrator when the 
trajectories of states approach the reference [9], [10] and [11] 

rc uuuu ++= ∆  (25) 

where cu and u∆  are defined in (11,12) and ru is given by 
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where ik is the integral constant and δ is a positive constant satisfying 
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Fig. 2. Behavior inside the boundary layer 
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5. Experiments Results 

In order to illustrate the above design techniques and demonstrate the performances of 
systems control, the proposed algorithm is applied to a physical laboratory plant 
consisting of a three tank system figure (3 & 4); the objective is to control the liquid 
level of tank three while introducing a leakage (external disturbance) in the outflow 
pipe of tanks 1 and 3. The experimental schemes have been done under 
Matlab/Simulink, using Real-Time Workshop interface, and run on the DS1102 
DSPACE system, which is equipped with a Power PC processor. The control 
algorithm is implemented on a DSP (TMS 320C31). 

 
 

Fig. 3. Benchmark (three-tank) 
 

The system consists of three liquid tanks that can be filled with two identical, 
independent pumps acting on the outer tanks 1 and 2. The pumps deliver the liquid 
flows Q1 and Q2 and they can be continuously manipulated from a flow of 0 to a 
maximum flow Qmax. The tanks are interconnected to each other through lower pipes. 
The flow through these pipes can be interrupted with switching valves C13, C32, C20, 
L1, L2 and L3. The out flowing liquid is collected in a tank, which supplies the pumps 
1 and 2. Here the circle is closed. The liquid levels h1(t) , h2(t) and h3(t) in each tank 
can be measured with continuous valued level sensors. 

From the conservation of mass in the tanks we obtain the differential equations 
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Fig. 4. Benchmark (three-tank) 
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hi(t): the level in the first tank Ti i=1,2,3; 
Q13(t): the flow rate from tank T1 to tank T3; 
Q32(t): the flow rate from tank T3 to tank T2; 
Q20(t): outflow due to leak in tank T2; 
Q10(t): outflow due to leak in tank T1; 
Q30(t): outflow due to leak in tank T3 

 
In this paper, we propose a sliding mode control with integral action for the 

coupled tanks T1 and T3. The tank T2 is used to simulate a disturbance. 
The outflows through valves C20, L1, and L2 are zero and they are used to model 

failures of the system. 
The dynamic model of the coupled tank can be written as 
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The parameters of three tank system are defined in the following table 

Table 1. Model parameters of the three tank system 

Symbol Value Meaning 
A 0.0154 m2 tank section 
Sn 2.5*10-5 m2 cross-section of valves 

aZi 10 ≤≤ zia  flow correction term (i=1, 2,3) 

aLi 10 ≤≤ Lia  leakage flow correction term (i=1, 2,3) 

g 9.81 m/s2 gravity constant m/s2 

hmax 0.6 m maximum water level in each tank 

Qimax 1.17 10-4 m3/s maximum inflow through pump i (i = 1, 2) 

During operation of the system, high-frequency noise corrupts measurements from 
the pressure sensors, to alleviate this problem; a sliding mode differentiator is used to 
obtain better measurements of the water height. 
To obtain realistic results, the experimentations are carried out using the following 
uncertain parameters variations and perturbations: 

0073.0004,0 1 ≤≤ β , 0073.02 ≤β , 0073.03 ≤β . mhh 001.0
min31 =− , 

mhh 2.0
max31 <− , 

We choose the following sliding surface: 

)~~()( 22 xxhtS sm += &τ , with h= 0.1 and ssm 40=τ . 

Then 
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The disturbance w2(t) is assumed to be a slowly varying function of time, thus 
02 ≈w&  

Then, from relation (13) we have: 
K=0.02>0.011. 

Remarks :  

1- We also have: 
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Furthermore, if x2 =0 there is a control singularity. In reality, there is no control 
applied to the system. In our control design we assumed that 0)0()0( 21 ≠≠ xx . 

Discussion. The classical SMC, sliding mode control with smooth function SMGS 
and the sliding mode control with saturation and integral action SMGSI are shown in 
figures 5, 6 and 7. The step responses of all the three controllers are shown in figure 
5.b, 6.b and 7.b. Generally, it can be seen that the transient response of all the three 
controllers are good, and their performances are very similar. However, it can be 
observed that the control signal from the sliding mode control with saturation is 
smoother than the classical sliding mode control schemes fig. 5.a and 6.a, but we have 
an error after t=408 s when we introduce a step disturbance w1 fig 6.c. 

Figure 7.b presents the system responses h1 (t) and h3(t), when the SMCSI is used. 
In the first two intervals the system responses converge toward the reference fig. 11.c. 
It is noted that the control input Q(t) is with minimal amounts of chattering caused by 
output derivative feedback in the boundary layer figure 7. a. 

The integral action compensates the parametric uncertainties and the external 

disturbances, the integral action is almost null 136 .105)( −−×≈= smtuAQ rr  in the 

first and second intervals. In the third interval, the opening of the valve L1 creates a 

disturbance w1(t). In this part, 135 .1015.4)( −−×≈= smtuAQ rr  

Therefore, it can be concluded that the proposed control SMCSI schemes are 
robust against the parameters changes and disturbances acting on the system. 
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6. Conclusions 

A nonlinear sliding mode control design method is described in this paper for systems 
with mismatched disturbance and uncertainties. We start from a sliding surface design 
and sliding mode control design. Then, we establish a relationship between 
disturbance and steady-state error if the dynamics of the expression )(tε  has 

negligible dynamics. In this context, we propose an integral action to eliminate the 
steady-state error. 

We validated this method on a nonlinear three-tank system. The obtained results 
prove the viability of this control method and present good performances in term of 
robustness to disturbances and system uncertainties. 

 

 

 

 
 

Fig. 5: Experiments results of classical SMC. 
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Fig. 6. Experiment result of SMC with smooth control 
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Fig. 7. Experiment results of proposed control. 
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