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Abstract: In this paper, the nonlinear sliding mode contr&@MC) with
mismatch disturbances is proposed. We treat thélpno of control with this
class of disturbances and the chattering phenom@in@. proposed method
attenuates the effect of both uncertainties, ealedisturbances and eliminates
the chattering phenomenon introduced by classiiding mode control. The
model of a hydraulic system is used to test thgestgd procedure.
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1. Introduction

Variable structure control (VSC) results in highrfpemance systems that are robust
to parameter uncertainties and noise. Most of #réy evorks in the area are in the
Russian literature (see Utkin [17] and the refeesnwithin). Subsequently, various
VSC algorithms have been successfully used foedtajy tracking problems [1], [4],
[8], [12] and [14]. Good results have been reporied eliminating external
disturbances, addressing nonlinearities, and attgewacceptable control in the
presence of modelling errors. A popular VSC appnodar trajectory tracking
problems is based on Lyapunov's method. This apprgields multivariable designs
that produce sliding mode on the intersection gés& switching surfaces.

The control laws are designed so that the systajectory always reaches the
sliding surface. This is known as the reaching ph&mnce on the sliding surface, the
control structure is changed discontinuously tontzan the system on the sliding
surface. At this stage, the system is in the gligihase. The control law may be linear
or nonlinear during the whole or parts of the cohtnission. Its structure changes
according to a preselected switching logic. Thetdvaés in the control structure
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depends on the instantaneous values of the sysédenadong the trajectory, see [2],
[3] and [8].

High frequency control switching leads to the stlerl chattering effect, which
results in potentially harmful high frequency vitioa of the controlled plant. Several
methods have been proposed to overcome these udiffs; for example [15]
proposed an interpolation of the control inside rmary layer, replacing in the
expression of u the term sign (S) by sat(S). Owategy consists in adding an integral
corrector to the sliding mode control when theetgyry of the state goes into a
boundary layer and approaches its reference.

The matching condition assumption is unfortunatidirly restrictive and not
satisfied by the majority of real-world systems.nde the non-matching disturbances
and uncertainties will affect the sliding mode dyries and may cause unacceptable
deterioration in the performance of some regulatggput. Most of the references in
the VSC literature such as Emelyanov et al [6] @®rsthe stability of a nonlinear
system with VSC where the output dependent noniityeds treated as a non-
matching disturbance, and Spurgeon and Davies ¢a6$ider a modified VSC (to
provide a continuous control and eliminate chattgrito achieve uniform ultimate
boundedness in the neighbourhood of the ideal nglidsurface for a class of
unmatched uncertainty. More recently, a techniquesbnstructing a storage function
for a broad class of nonlinear passive systems mifmatched uncertainties has been
proposed by Weiping [18]

The paper is organized as follows: the non lingatesn model is presented in
section two; section three and four describes liding mode control. Section five
will be devoted to the experimental results. Finatbme concluding remarks end the
paper.

2. Problem Statement

We consider a nonlinear SISO controllable systerargby
X = F,)+ B(X)u+w
y=X;
X= [xl,xz]T c Xe R? is the state vectonie U c %R is the control input to be

bounded by|u/<Ug, f:%* 5% and f,:%* >R are continuous and smooth
functions, we assume thagf—Z;tO and B(x)#0, yeYcR is the output,
X

w=[w,w,]T e W c R? represent the disturbances and parameter varatnere

|WL| <Wpo, |W2| <W,q and |\iv2| <dwyg.
The design procedure for a state based sliding reod#oller can be divided into
two parts:
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Step 1: Finding the switching functio8(x) € R, such that the internal dynamics in

the sliding mode are stable.
Step 2: Designing a controlleu, which ensures that the sliding mode is reached
and subsequently maintained.

ut if S>0
u= (2
u if S<O

3. Sliding surface design

The switching surface plays the major role in definthe reduced-order system
dynamics. Many techniques have been devised fdgmieg the switching surface.
These techniques include: Filoppov’'s method [7kitUs equivalent control method
[17], pole placement, and quadratic minimizatiorthroes.

To achieve the robustness property with respeaintmatched disturbances and
uncertainty parameters, the sliding surface shbeldesigned such that:

S(t) = h(TgnX, + %) ©)

wherez,, >0 is the time constant in sliding modk> 0 is a constant parameter
and X, = y—y, .is the output error.

Definition 1. The system (1) is in presence of an unmatchedrbatce, if the exists
a disturbance w(t) such that the motion in theistidnode of system (1) depends on
the w(t).

Notations The expression;, ay, a3 and v are intermediate parameters given by

o, of of .
= —¢O,a = —2+1, = _Z,and ="Csm¥r — Yr -
 =Tg, aXi 2 (Tsm sz ) a3 =Ty 8x2 v TsmY Y

Theorem 1. Consider the sliding surface (3) and let us suppbse the trajectory of
state reaches the surface in a finite timartd confined to this surfa&ét) = S(t) =0
for t>t,.

Then, for all timet >t, (t; is reaching timg the solution o{1) is given by
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t
a, ~ T
X, (1) = X, (t, ) + | =2 X, ——SM\, (t) +
0=+ [ 2R =i

1

. ds .
+ﬂyre_;3yrd7 (4)
1 1

_ _ —(t)
Xo(t) =X (t, ) e "m

So, the output error converges exponentially tozer

Proof. At the surfacé(X) = S(x) =0, we have

B(X)Ugq = —((X) + W, + 22 %, — Zom

W, (t))
1 1
5
Tsm a; . ( )
+ Yret = Yref
g Cl

According to equations (5) to (1), for dlkt, , the motions equations are of the form,

. A< Tep.. Tom o a; .
X =——=X; - Wz(t)"'_yref —— Yret
g q 3 3
(6)
- 1 -
Xp = ———X,
Tsm

this means that (4) is well verified

0
So, in the course of sliding mode, it is importatitat its output error

~ ~ —, () . .
(X, () =X,(t,)e ™ ) depends neither on the parameter nor disturbance.

From the theorem 1 and definition 1, the systemigla system with mismatch
disturbancex;(t) depend on thex(t)).
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4. Sliding M ode Control Design

In the design of a Sliding Mode Control (SMC), thexist a number of approaches, in
particular the method based on the selection ofyapunov function. The control
should be chosen such that the following candidatapunov function satisfies
Lyapunov stability criteria:

1.
V==S 7
5 (7)

The derivative of the Lyapunov function is negatidefinite, thus guaranteeing
motion of the state trajectory to the manifold:

V=3%<0 (8)
The time derivative 0§(x) is

S(t) = hlay (f1(X) + W) + &, B(X)u + a,%,

+ ToW, (1) + v] ©)
The control input signal can be given as
u=u,+4u (10)
whereu, is the continuous control
e = g (00 22ig+ ) (1)
and Auis the corrective control term
u= %%sign(s) (12)
The constankK is chosen so that sliding phase$(x) =0) occurs.
According to (8) this implies
K >wy, +7,,,0w, (13)

Then, after a finite tim& which depends only on the parametgr, the system state
reaches the sliding surface.

4.1 Smooth control interpolation in the boundary layer

The continuous sliding mode control has been saecommonly in SMC problems
to avoid chattering phenomena. To solve this prabléhe signum function is
replaced in (12) by a smooth function. Many funetidnave been used, introducing a
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thin boundary layer around the sliding surface [Fgr example a saturation function
has been used

sign(s) if [§>¢

sat(S)=1s ] (24)
= flg<
, Tles=e

where ¢ is a positive constanipe R*. ¢ defines the thickness of the boundary
layer.

4.2 Behavior inside the boundary layer

The presence of a boundary layer is required topbetely eliminate the chattering
phenomenon. In order to have a robust feedbaclemsysthe use of a smalp is

needed, but a too smalp will increase the chattering problem. Thus, itvery

important to know the system behavior inside therlglary layer to be able to set an
appropriate value of .

4.2.1 Nominal system behavior in the boundary layer

In this section we show that the sliding mode aunflgorithm guarantees the
convergence of the nominal system to equilibriunmpo

Lemma 1. Consider the sliding surface (3) and the contrgitit (10) with smooth
function (14), for the nominal cage;(t)=0 and w(t)=0 ), we have
lim S(t)=0 (15)

t—+oo

The convergence gft) to y; is guaranteed

Proof. In the nominal case, with the continuous slidingdm@ontrol, outside of the
boundary layer, the derivative of the sliding soefés

S(t)=-K sign(S(t)) (16)

wheret, :%

In the boundary layer the derivative of S is

&) =—k > (17)
2
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K is a positive constant. The solution of expres$idf) is given by

K

S(t) = ¢ sigr{S(t, )] e (18)

which implies (15)
Then, the convergence y(t) toy, is guaranteed.

0
The following figure (1) shows the trajectory oktkliding surface in the boundary
layer.

A S(t)

Trajectory with S(0) >0

v
—

Trajectory with S(0) <0

Fig. 1. Nominal system behavior in boundary layer.

4.2.2 Uncertain and disturbed system behavior in the boundary layer

Notation Knowledge of the maximum disturbance bound is ndetdedesign a
sliding mode controller. The expressionse(tj andé are used to simplify our

analysis.g(t)e R is defined by:
e(t)= aiwl(t) + Ty ® (19)

£e R is constant and defined such that:

f = |a1max|WOl + Tsdeoz (20)

Lemma 2. Consider the sliding surfacé3) and the control input(10). If the
parametric uncertainty and disturbance are boundbdn for all timet >t, (t, is the
reaching time to the boundary lay&t, ) = ¢sigriS(t,)]), then the surfaces(t) is
bounded inside the boundary layer:

ISt|<g Vi>t, (21)
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Proof. For |S(x,t)| > ¢ the system trajectories are guaranteed to convertye
boundary layer by the law (8), but whig(x,t)| < ¢ the structure of control is

changed and treagn(S) becomes§, we have then:
@

% S(t) + S(t) = %g(t) (22)

Equation (22) is a first-order differential equatiovith a second member, the
general solution to this equation fot,, is

3 K,
S(t) =psigr S, )] +e ¢ j: e(z)e? dr (23)

From equations (19) and (20), we hade< g(t) < £, then

Sn(t) < S(B) < S, (1) (24)

where

S.()=—e ¢ [ ‘e dr

—Kt t £‘r
S, ()=¢ "’ j fe’ dr
tr
In the cas&(t, ) > 0, we have

)

il e
S=pl-0+2)e” ]

S0 =gl +a-2e ]
Then
—p<S(t)<oe
In the cas&(t, ) <0, we have
S, =05 +a-)e )
_ptE e Eye o
Sw(t)—(p[K (1+K)e ]
Then
—p<S(t)<o@

Thus, for allt>t,, St) is bounded such that
St)|<¢
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hence equation (21) of lemma 2 is satisfied.

0
The system behavior is not determined inside a @agnlayer (see figure 2);

further convergence to zero depends on the parasa{€te equation (22).

A S(t)

2
Sin(®)

Fig. 2. Behavior inside the boundary layer

(caseq(t;)>0)

4.3 Integrator corrector in the boundary layer

In order to solve a steady-state error problem,irdegral sliding manifold was
proposed in [5] and [13]. This development is idtroed and justified only by tests
on specific systems. Our idea consists in recatstg a control law to eliminate the
steady-state error created by the disturbance. Wieda an integrator when the
trajectories of states approach the referencd10],and [11]

u=u,+A4u+u, (25)

whereu,and Au are defined in (11,12) ang} is given by

o K[V @dr whenffl<o 2
0 whenly| > &

wherek; is the integral constant andlis a positive constant satisfying

52%40 (27)
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5. Experiments Results

In order to illustrate the above design technicared demonstrate the performances of
systems control, the proposed algorithm is appteedh physical laboratory plant
consisting of a three tank system figure (3 & #g bbjective is to control the liquid
level of tank three while introducing a leakagetéemal disturbance) in the outflow
pipe of tanks 1 and 3. The experimental schemese hawen done under
Matlab/Simulink, using Real-Time Workshop interfagnd run on the DS1102
DSPACE system, which is equipped with a Power PGcgssor. The control
algorithm is implemented on a DSP (TMS 320C31).

Fig. 3. Benchmark (three-tank)

The system consists of three liquid tanks that lsarfilled with two identical,
independent pumps acting on the outer tanks 1 afith@ pumps deliver the liquid
flows Q,; and Q, and they can be continuously manipulated fromosv fof O to a
maximum flow Q.. The tanks are interconnected to each other tirémger pipes.
The flow through these pipes can be interruptedh wititching valves G, Csy, Cyg,
L,, L, and Ls. The out flowing liquid is collected in a tank, iwh supplies the pumps
1 and 2. Here the circle is closed. The liquid Is¥g(t) , hy(t) andhs(t) in each tank
can be measured with continuous valued level sensor

From the conservation of mass in the tanks we oltta differential equations

Fu(®) =5 (@~ Qu~ Qo)

Fo) = (@2 + Qs - Quo)

) =5 (Quo - Q2 ~ Qao)

(28)
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D/IA ‘

1B[043U0D

Fig. 4. Benchmark (three-tank)

Quz = Spasign(hy (t) — hs () 29|h1(t) —hy (t)|
Qaz = Sy, sSign(hs () — h, (1)) 29 (1) — h, 1)
Qy=Sy(as+ azS)m

Qo =Shay2ghy =123

where

hi(t): the level in the first tank;1=1,2,3;
Qu3(t): the flow rate from tank jTto tank T;
Qso(t): the flow rate from tank Jto tank T;
Qoo(t): outflow due to leak in tank,T
Quo(t): outflow due to leak in tank T
Qso(t): outflow due to leak in tanksT

In this paper, we propose a sliding mode contrgtvitegral action for the
coupled tanks Tand . The tank F is used to simulate a disturbance.

The outflows through valves,g; L, and L, are zero and they are used to model
failures of the system.
The dynamic model of the coupled tank can be writte

X =) +u+w
Xy = o (X) + W, (29)
y=X;

where

X =[xy, %] =[hy, 1"
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f1(X) = =fisign(xq (t) — X, (t))\/|xl ) —%; (t)|
F(X) = Bisign(x (t) — X, (1) (1) = % (1) - Csy/hy

,"Q
A
Q
w, (t) = ——;\0+Af1
Q32

W, (t) = —T-i' Afz

Sa, /2
=——ZY = Z,IA 9 i=1, 2,3,

C. = S\a3v29
=T

The parameters of three tank system are defindtkifollowing table

B

Table 1. Model parameters of the three tank system

Symbol Value Meaning
A 0.0154 m tank section
S, 2.5%10°m? cross-section of valves
ay; 0<a. <1 flow correction term (i=1, 2,3)
<a, <
a 0<a; =<1 leakage flow correction term (i=1, 2,3)
g 9.81 m/$ gravity constant mfs
Pmax 0.6m maximum water level in each tank

Qimax 117 10 m¥s  Maximum inflow through pump i (i = 1, 2)

During operation of the system, high-frequency easrrupts measurements from
the pressure sensors, to alleviate this problestiding mode differentiator is used to
obtain better measurements of the water height.

To obtain realistic results, the experimentatiorss @arried out using the following
uncertain parameters variations and perturbations:

0,004< 3, < 0.0073, 3, <0.0073, B, <0.0073. |h—hy| =0.001m,

I, —hy|  <02m,

We choose the following sliding surface:

S(t) = h(z,, X, + X,) , with h= 0.1 andr,, = 40's.
Then
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ﬂ max
A ax = Tsml— =~2.1, |Afl|max = |Af2|max = (ﬂlmax - ﬁlmin )\/|h1 - h3| max
|hl - |'13| min
Wy = (| +0.0073/hy,.,,) = 0.0051m/s
The disturbance,(t) is assumed to be a slowly varying function of titinels
W, =0
Then, from relation (13) we have:
K=0.02>0.011.
Remarks :

1- We also have:

W, < Ql;ax =0.0077M/s

2- Note froma,anda, that there is a singularity ¥= x,. In fact, only th% and

1 : . .
— expressions are used in the control design:

a_ ARO-60_ 2xO-60L 1 2K0O-%0)
q Tmsﬂl Tsmﬂl\/x_z N Tmsﬂl .

Furthermore, ifx, =0 there is a control singularity. In reality, teés no control
applied to the system. In our control design weiaesl thatx, (0) = x, (0) 0.

Discussion. The classical SMC, sliding mode control with smoéihction SMGS
and the sliding mode control with saturation anegnal action SMGSI are shown in
figures 5, 6 and 7. The step responses of alltireetcontrollers are shown in figure
5.b, 6.b and 7.b. Generally, it can be seen tratrémsient response of all the three
controllers are good, and their performances arg senilar. However, it can be
observed that the control signal from the slidingde control with saturation is
smoother than the classical sliding mode controéstes fig. 5.a and 6.a, but we have
an error after t=408 s when we introduce a stefuidiancew; fig 6.c.

Figure 7.b presents the system respohs€d andhs(t), when the SMCSI is used.
In the first two intervals the system responses/egge toward the reference fig. 11.c.
It is noted that the control inp@(t) is with minimal amounts of chattering caused by
output derivative feedback in the boundary layguffe 7. a.

The integral action compensates the parametric rtainges and the external
disturbances, the integral action is almost mQll= A u, (t) =5x10°m’s™ in the
first and second intervals. In the third intervhle opening of the valve,lcreates a
disturbancew,(t). In this part,Q, = Au, (t) = 415x10°m’s™

Therefore, it can be concluded that the proposetralo SMCSI schemes are
robust against the parameters changes and distgbacting on the system.
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6. Conclusions

A nonlinear sliding mode control design methodésatibed in this paper for systems
with mismatched disturbance and uncertainties. & §om a sliding surface design
and sliding mode control design. Then, we establishrelationship between

disturbance and steady-state error if the dynamsicghe expressiong(t) has

negligible dynamics. In this context, we proposeirgegral action to eliminate the
steady-state error.

We validated this method on a nonlinear three-tsydtem. The obtained results
prove the viability of this control method and mesgood performances in term of
robustness to disturbances and system uncertainties

IH
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time(s)
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Fig. 5: Experiments results of classical SMC.
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Fig. 6. Experiment result of SMC with smooth control
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Fig. 7. Experiment results of proposed control.

(7.b) — Control input (is)

(7.c) — Zoom region.
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