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Abstract. This paper presents a new approach to stabilize robustly, by state feedback 
control, an uncertain polytopic system with non measurable states. The control law is 
obtained by switching between estimated outputs generated by different observers designed 
from the tops of polytope. Every controller is synthesized to stabilize a sub region into the 
polytope. All the stabilized sub regions describe the whole polytope. The computing of state 
feedback gains and observers gains are based on the use of LMI formulation. This work is, 
also, presenting techniques for resolving the non convexity of obtained LMI’s by using a 
relaxation algorithm. The used switched law guaranties the robust plant stabilization by 
choosing the optimal controller. 

Keywords.  uncertain system, polytopic uncertainty, observers, robust stabilization, 
non convex LMI, LMI relaxation, switched command system, switched laws.  

1. Introduction  

During the last couple of decades, the switched systems were the subject of several 
publications in the theory of system commands. In fact, several industrial 
applications impose a changing in the regime of functioning generally which are  
leading to a modification of system dynamics. Take for example the regime of 
changing speed in vehicle [5], the control of some robots and the flexible workshops 
[3], [14], [11] the functioning of human heart can be also modelized by the hybrid 
system [17]. 

Many researchers were interested in the stabilization of switched systems that 
have uncontrollable switched law between subsystems [16], [7], [8], [9]. The interest 
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of such approach is based on the formulation of a necessary and a sufficient 
condition to stabilize asymptotically a switched system for an arbitrary switching 
law. 

 
Other approaches are interested in determining a switched law among many 

supervisors who guarantee systems stability [21], [15], [13] whose constraints of 
functioning impose the switching between many controllers [20], [23]. We can 
quote the work of Petterson and Lennarston [20] who assume a perfect knowledge 
of a linear system and the command laws. They present a method for a synthesis, if 
it is possible, for a stabilized switching law. 

 
In 1994, wicks [23] assumed a switched law for the stabilization of a linear 

system by using two switched commands. 
 
In 1997, Skafidas [21] presents a necessary and sufficient condition for the robust 

stability of systems commanded by synchronous switched controllers. 
 
In 1998, Branicky [4] presents the use of several Lyapunov functions as a tool for 

the study of some switched command systems. 
 
In 1998, Savkin [21] laid down sufficient conditions for the robust stabilization 

by output feedback with switched synchronous controllers. 
 
In the second part of this paper, we‘ll start by the problem formulation of an 

uncertain system stabilization having an uncertainty of a polytopic form and we’ll 
equally represent the principle of a restrained command figure. 

 
In the third part, we’ll assume a developed command from a single barycentric 

observer using the formulation L.M.I. An illustrative example is presented to show 
the limits of using a single observer for the stabilization of these particular types of 
systems.  

 
In the fourth part, we’ll start by presenting the construction of a multiobserver as 

well as the conditions for polyquadratic stabilization of every sub region of 
observation. Then, we’ll show the criterion of switching between different observers 
guaranteeing the stabilization of an uncertain system. An illustration is provided 
below this part.  

2. Problem formulation  

The discrete and uncertain polytopic L.T.I system can be described by the 
following representation: 
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with :Ai : one of the vertices of the polytop, B: input matrix, C: observation matrix, 

λi : activation function satisfying :0 ≤ λi ≤1 et 
1

1
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i
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=
=∑ . 

Every activation function is uncertain but time invariant. 
In the rest of this paper, we assume that some of the states of this system are not 
measurable. We proposed to synthesize a switched command law based on the use 
of many observers designed from the vertices of polytop. We are equally 
determining that in case of an uncertain system, the principle of separation is not 
applicable, and to get round this difficulty, many researchers [22] were oriented 
towards the use of a single observer in an uncertain system case. This approach does 
not anyway allow the stabilization of the system in a great deal of uncertainty [18]. 

 
We consider P, points of polytop from which we build P observers , one observer 

is written in the following form : 

ˆˆ ˆ ˆ( 1) ( ) ( ) ( ( ) ( ))
ˆ ˆ( ) ( )

j j j j j

j j

x k A x k Bu k L y k y k

y k Cx k

⎧ + = + + −⎪
⎨

=⎪⎩
                                       (2) 

Lj : gain matrix of observer j  
 
In order to stabilize the uncertain system commanded by the group of observers' j 

as { }1..j P∈  and described in (2): there must be: 
-  Every observer j stabilizes a region Pj of polytop as the groups of regions Pj 

hide the global region described by the polytop. 
- The switching law guarantees the global system stabilization by choosing the 

best observer and then the best controller. 
 
 
 
 

 

 

 

 

 
Barycentric observer of 
the polytop 

Sub 
polytop 
Pj

Ai : one 
vertices of the 
polytop 
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Fig.1. Polytop of uncertain system 

 
The scheme of control bases on the use of multiobserver and switched law is 

represented on figure 2. 
 

 

 

3. Stabilization by barycentric observer  

In this paragraph, we are propose to use a single observer, barycenter of the polytop 
to stabilize an uncertain system.  

3.1. Augmented system equations  

We consider the system described by (1), the state equations of the barycentric 
polytop observer are written in an analogue way to (2): 

ˆˆ ˆ ˆ( 1) ( ) ( ) ( ( ) ( ))
ˆ ˆ( ) ( )
b b b b b

b b

x k A x k Bu k L y k y k
y k Cx k
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                                       (3) 

Let: ˆ( ) ( ) ( )bk x k x kε = −                                                                                   (4) 
The dynamic of error ε (k+1) is, then, written as follows: 

1 1

ˆ( 1) ( ) ( ) ( ) ( )
n n
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k A A x k A LC kε λ λ ε
= =
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The control law u(k) is : 
ˆ( ) ( )bu k Kx k=                                                                                                        (6) 

The augmented system equation: 

1

( 1) ( )
ˆ ˆ( 1) ( )

i n i
i

i i b b

A BK BKx k x k
k kA A A LC

λ
ε ε

=

=

+ −⎛ ⎞+⎛ ⎞ ⎛ ⎞
= ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟+ − −⎝ ⎠ ⎝ ⎠⎝ ⎠
∑                                           (7) 

Fig.2. Scheme of control: multiobserver based 
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It’s not possible to use the separation principle due to the presence of the term 

ˆ
i bA A−  . 
 
Taking into account equality (8), equality (7) is then written as follows: 
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3.2. Robust stability analysis 

We consider the system defined by: 

( 1) ( ) ( )x k x kΦ λ+ =                                                                                           (11) 

 The matrix Φ(λ) to the set of convex polytopic Φ defined by : 

0
1 1

: ( ) : ( ) 1
i n i n

i i i i
i i

Φ avec etΦ λ Φ λ λφ λ λ
= =

≥
= =

⎧ ⎫= = =⎨ ⎬
⎩ ⎭

∑ ∑                                   (12) 

3.2.1. Definition 1 (Oliveira et al, 1999)[19] 
 
The system described by (11) is robustly stable in the uncertain domain described by 
(12) if all the characteristic values of the matrix Φ(λ) have a magnitude inferior to 1 
for all the values of λ as Φ(λ) belongs to Φ. 

The theorem 1 presents LMI formulation of the robust stability problem of 
polytopic uncertain system. 

3.2.2. Theorem 1 (Oliveira et al, 1999)[19] 
The uncertain system (11) is robustly stable in the uncertain domain described by 
(12) if the symmetric matrices Pi exist and a matrix G satisfying the following 
inequalities: 
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The matrix G is introduced to synthesize one only command that stabilizes the 
whole of polytop taking into consideration the Lyapunov functions proper to every 
top. 

3.3. Application in case of barycentric observer  

The application of theorem 1 in case of system (9) allowed, by substituting: 

1 2

3 4

G G
G
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⎛ ⎞

= ⎜ ⎟
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                                                                                                   (14) 

with Gi of nxn dimension, to obtain the following conditions of robust stability : 
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The development of expressed condition (15) leads to (16) 
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The research of LMI solutions to (16) with constraints of equality is not a convex 

problem. The K and L solution of imposed equalities exist only if the following 
conditions were checked [12]: 
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A number of techniques were used to find solutions to non convex problems such 
as the algorithm of relaxation proposed by Halabi [12] 

 
The solution of (16) has become a convex problem in the case where G2 = G3= 0. 

In other words, in the case where the matrix G is a diagonal bloc because the matrix 
G4 has an inverse and we have in this case (18) 

1
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−

=

=

K V U

L G Y
                                                                                                          (18) 

The choice of G2 null, G triangular inferior, allows eliminating the non convexity 
on L. In This case we’ll start by calculating K stabilizing the pairs (Ai, B) for 

{ }1i ..n∈ , then in the second step, we’ll calculate L using (18) with checking the 
feasibility of condition (13). 
 

3.4. Illustration example 

We consider the benchmark described by Wie and Bernstein, 1992)[24] and 
adopted by (M.V. Kothare et al, 1996)[18] as well as (Skafidas et al, 1999)[21] and 
(Cuzzola et al, 2002)[6]. 

The system consists of two masses related by a spring (see Figure 3). The discrete 
state representation (M.V. Kothare et al, 1996) is: 
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            (19) 

 
x1(k) and x3(k) are ,respectively, the position and the speed of truck 1. x2(k) and 

x4(k) are, respectively, the position and the speed of truck 2 .  
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Fig. 3. Two trucks related by spring 
 
Having : 
m =m1 = m2= 1Kg 
r∈[rmin  rmax]=[0.5  15] Nm 
The computing, in case G2 = 0, of gains K and L leads to (20) 
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Fig. 4. Evolution, in time, of position of truck 2 for many different values of r 

4. Stabilization by a switched multiobserver 

The defect in using a single observer is the limitation of the uncertain system 
stability domain. In fact, when the uncertainty increases, it becomes impossible to 
stabilize the system on the entire region described by the polytop. 
That's why we suggest to divide the global polytop into many subpolytops and we 
build for these subpolytops an adequate observer. 

The applied command to the system is the switching result between these 
observers. The switched law must guarantee the stability of the uncertain system 
[11]. 

4.1. Construction of multiobserver 

Given that the only two pieces of information, provided by the system, are the input 
command u(k) and the output y(k). The problem the is n the reconstruction of state 
x(k). To find a solution to this problem, we use a multiobserver that is similar to the 
one suggested by Akhenak [1] for the state reconstruction of a system described by a 
multimodel.  : 

1
1 ( )( ( ) ( ( ) ( )) ( ))

( ) ( )

P

j j j j j
j

ˆˆ ˆ ˆx( k ) µ k A x k L y k y k Bu k
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=
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⎨
⎪ =⎩

∑
                    (22) 
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µj Switching function defined by : 

{ }1

0 else

jj
j

if j min J ( k )
µ ( k )

⎧ =⎪= ⎨
⎪⎩

                                                                    (23) 

 
Jj (k) commutation criterion at the discrete time k 
 
u(k) applied to system, at the discrete time k, is then : 

1
( ) ( ) ( )

j P

j j j
j

ˆu k µ k K x k
=

=
= ∑                                                                                  (24) 

Taking into account the formulation (2) and the described division in (Figure 1), 
the condition for robust stabilization of each subpolytop is expressed by the 
following LMI: 

0
T T

j , j , jj j

T
j j , j j j ,j j

P G

G G G P

α α

α α

⎛ ⎞φ
⎜ ⎟ >
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                                                                   (25) 

j: index of subpolytop Pj 
αj : one top of  polytop Pj with αj ∈{1..nj} 
nj: number of vertices of subpolytop Pj 

 

The resolution of (25) allows to compute one gain Kj and one observation gain Lj 
for every sub-polytop . 

4.2. Commutation Criterion among observers 

The switching criterion Ji must allow the convergence to the optimal observer, 
which generates the minimum errors between the real and estimated states. Such 
errors are to be computed using a horizon of errors  observation.  Regarding that in 
the stage of sampling, the only information provided on the system is its output y, 
the criterion must choose the best observer and must converge towards the observer 
who delivers the jŷ  which is the nearest to y on an observation horizon, the length 
ℓ of which is : 

rank of system
n
n :
<                                                                                                     (26) 

Observation horizon ℓ must be chosen in a way that it leads to a temporary 
redundancy for every observer [10]. 
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The criterion Jj is then defined as following 
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Algorithm 
Step 0: Initialization 
 k=0 
  Initialization of state vectors for the different observers 
  Choose the length ℓ of the observation horizon  
  Initialization of vector Ej 
   For i=0 to ℓ Ej(i)=0 
  Choose arbitrary one of the states of the different used observers  
  Apply (0) (0)j jˆu K x=  
Step 1: Choice of the best estimated output 
 k>0 

Collect input data of system and output system and the different 
observers. 

Calculate the observation vector Ej (k-ℓ, k) on the horizon (k-
ℓ,..,k) for every observer j 
                 

        
if 0 then

0 [0 ]j

k i

ˆy( k i ) y ( k i ) i ..

− + <

− + − − + = ∀ ∈
                               (29) 

 
 Calculate the quadratic criterion Ji  using (27) 
 
 Search { }( ) ( )min jj

j k min J k ,k= −  

Calculate the activation functions  
1    if ( )

( )
0   else 

min
j

j j k
µ k

=⎧
= ⎨
⎩
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ˆu( k ) µ k K x k
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Step 2: Application of command u(k) 
 Apply u(k) to the system and to different observers 
 Back to step 1 
 
End of algorithm 
 
The algorithm of the estimation ends by converging towards the best observer 

whose output tends towards the real output of system. The existence of this observer 
is assured by the fact that the system, which is, by force belongs necessarily to one 
of the stabilized subpolytops  

4.3. Illustration 

We reconsider the example introduced in (3.3), the stiffness of the spring 
r∈[rmin..rmax]=[0.5..29.5] Nm. 
 

We are proposed to stabilize the system by two observers described by the 
dynamic matrices Â1 and Â2 as the first observer stabilize the interval (15..29.5) and 
the second observer stabilize the second interval (0.5..15). The calculated feedback 
state gains K1, K2 the observation gains L1 , L2 , and the matrices G1i are: 
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Figures 6, 7, 8 and 9 show respectively the evolution, in time, of the position of 

truck 2, control law, switching criterion and the switching between observers on the 
interval [0..3] seconds. 

 
Fig.5. Evolution, in time, of position of truck 2 for many different values of r 
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Fig.7. Evolution, in time, of position of truck 2 for r =15Nm 
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Fig.8. Evolution, in time, of position of truck 2 for r=0.5Nm 
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Fig.9. Evolution, in time, of position of truck 2 for r=29.5Nm 
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Figures 6, 7, 8 and 9 clearly show that the algorithm of choosing the best observer 
who converges towards the adequate one particularly for the tops of every 
subpolytop. The developed approach is less conservative and allows stabilization of 
the plant on a great interval of uncertainty by comparison with the approach 
proposed in section 3 and other published  works [18]. 
Obviously that in this study the uncertainties are putted only on the state matrix and 
in case of different input matrices the mathematical development, which is more 
difficult to carry out due to the presence of a new terms iB∆   in (7). 

5. Conclusion 

In this paper a new approach is presented to synthesize a control law and to 
stabilize a polytopic uncertain system based on observers designed from the tops of 
polytop. 

A LMI formulation was presented for the calculation of different gains by state 
feedback and the gains of observation relative to different observers. A switched 
control law based on a criterion of quadratic minimization focusing on the distances 
between the real output of plant and the different outputs generated by the observers. 
An illustrative example that proves the efficiency of the suggested method is 
presented.  

One of the possible perspectives of this work is the use of switched control laws 
allowing the stabilization of several subsystem initially unstable.  
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