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Abstract Non-minimum phase systems are known to be difficult to con-
trol especially when Generalize Predictive Control (GPC) based on state-
space representation is considered. To solve this problem, an innovative
synthesis method is proposed. It appeals: first, to estimate unmeasured
states in order to stabilize the process with a state feedback; second, to
decouple the system inputs and outputs in order to control separately
the dynamics of the obtained subsystems closed loops. Some illustra-
tive simulation results for a given system are presented and discussed.
The proposed method makes possible to optimize separately the GPC
parameters for each subsystem.

1 INTRODUCTION

For several years, the industrial community has expressed a growing interest in
Generalized Predictive Control (GPC) which has also influenced significantly
process control [1]. Simultaneously, this type of control continues to be the sub-
ject of many theoretical works in the linear and non-linear domains aiming to
extend its potential fields of applications. [2] explains nonlinear Model Predictive
Control (MPC) and moving horizon estimation and includes numerical solution
techniques, [3] contributes in the comprehension of the theoretical results on
the closed-loop behavior of MPC algorithms. Notable past analysis of MPC
theory include also those of [4], [5], [6], [7], [8], [9]. The GPC using a state-
space approach was studied by [10], [6], [7], [11], [12], since it offers interesting
prospects:[13] and [14] demonstrate the possibility to put the closed-loop sys-
tem in a form amenable for applying the perturbation analysis. [15] points out,
that the state-space controller has better disturbance rejection when a set-point
change occurs in another interconnected loop, and is capable of running signifi-
cantly faster than the polynomial approach.
Though the state-space approach requiring to have access to all states variables
of the considered system, it yields the use of an observer [10], [12], [2].
Unfortunately, the state-space approach always runs up against the problem of
non-minimum phase discrete Multi-Input Multi-Output (MIMO) systems [12],
[16], [17]. The flatness property has made this problem solvable only for GPC
based on output [18].
This paper describes an innovative method to design GPC dedicated to unstable
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non-minimum phase systems [19], [20]. It appeals: first, to estimate unmeasured
states in order to stabilize the process with a state feedback; second, to decouple
the system inputs and outputs in order to control separately the dynamics of
the obtained subsystems closed loops.
This paper is organized as follows : in section 2 the state-space GPC approach
and its instability problem are briefly reminded. In section 3 the various steps
of the method suggested are detailed. Some illustrative simulations are given in
section 4 and section 5 concludes the paper.

2 BRIEF REMINDER ON THE STATE-SPACE GPC
APPROACH

2.1 Control Principle

Let considered a linear time invariant discrete MIMO system described by
{

x(k + 1) = Ax(k) + B4u(k)
y(k) = Cx(k) (1)

where x(k) ∈ <n, 4u(k) ∈ <q and output y(k) ∈ <s are the state, input and
output vectors at time k respectively.
The matrices A, B and C have respectively the dimensions (n× n), (n× q) and
(s× n).
The control signal

4u = [4u(k),4u(k + 1), · · · ,4u(k + N2)] (2)

is chosen to minimise the quadratic cost function [10]

J =
N2∑

j=N1

[ŷ(k + j)− yc(k + j)]2 + λ

Nu∑

j=1

[∆u(k + j − 1)]2 (3)

where ŷ is the predicted output and yd the desired output. The parameters N1,
N2 and Nu are refereed, respectively, to the minimum prediction horizon, the
maximum prediction horizon, and the control horizon, and λ ≥ 0 is the control
increment weighting.
There are no rules to set those parameters, but some directive lines are given by
[4], [21], [16]:

– N1 is equal to 1+ system’s delay (if this delay exists).
– N2 is chosen to satisfy N2Ts equal to the response time of the system (where

Ts is the sampling time). Generally, the value of N2 is greater than the
numerator degree of the transfer function of the system.

– Nu and λ considerably effect the stability of the system. They are much
more difficult to set.
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Like feedback control, GPC state-space approach requires the estimation of all
unmeasurable state variables. For this reason, the observer theory proposed by
[10] has been chosen as a first approach among all existing ones [2], [22], [23],
[24]

{
x̂(k + 1) = Ax̂(k) + B4u(k) + L[y(k)− Cx̂(k)]

ŷ(k) = Cx̂(k) (4)

where L is the observer gain matrix and x̂(k) , x̂(k/k − 1). According to [25],
an equivalent representation of (4) becomes

ŷ(k) = G4u(k) + MAx̂(k) + MLξ(k) (5)

with

ξ(k) = y(k)− ŷ(k) (6)

where ŷ(k) , ŷ(k/k − 1) and

G =




CB
CAB CB

... CAB
. . .

...
...

. . . CB
...

...
...

...
CAN2−1B CAN2−2B · · · CAN2−Nu−1B




(7)

M =
[
C CA · · · CAN2−1

]T (8)

Finally the minimization of criteria (3) leads to:

4u(k) = [GT G + λI]−1GT [yd(k)−MAx̂(k)−MLξ(k)] (9)

where only the first row of ∆u(k) is considered and applied on the system to
control.
The control vector (9) required clearly the estimation of the state variable vector
and differs from the control vector of output GPC approach (10)

4u(k) = [G̃T G̃ + λI]−1G̃T [yd(k)− f ] (10)

where f = [ŷ(k + 1|t), · · · , ŷ(k + N2|t)]T
and

G̃ =




g1 0 . . . 0

g2 g1

... 0
...

...
. . .

...
ghp ghp−1 . . . g1




(11)

G̃ is a matrix of N2 × Nu elements. Each gi is the ith polynomial coefficient
defined by [4]. The equation of estimate output is written:

ŷ = G̃4u(k) + f (12)
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2.2 GPC Instability Problems

The application of the state-space GPC requires to lean with attention on the
choice of the various GPC parameters N1, N2, Nu and λ. Indeed, these parame-
ters influence considerably the closed-loop stability. There exist, in the literature,
straightforward guidelines to tune the GPC parameters [16], [26].
The application runs also up against the system problem bound to poles and
zeros outside the unit circle [27], [28], [12], [29]. In the case of unstable poles, a
usual solution consists on doing pole placement [30], [31], [27]. What returns to
stabilize the system and choose its dynamics, before applying the GPC.
In the case of unstable zeros, some solutions are proposed in [12], [17], [23], those
method are generally applied on a constrained system or a non-linear one.

The following section is entirely devoted to the presentation of a method
solving the problem of the unstable zeros when the state-space GPC is consid-
ered.

3 PROPOSED METHOD

Under the hypothesis that the system to control is a MIMO-square system with
the inputs number equal to the outputs number (dim 4u = dim y = s), the
suggested method is based on the following stages.

3.1 Decoupling MIMO System

The first stage is inspired from the decoupling method of continuous systems
matrix presented in [32] and [33]. It aims to obtain independent chains of input-
output subsystems.

The relative degree di is exactly equal to the minimum number of increments
of the output yi(k) which lets the input 4u(k) appears in (1), where yi(k) is the
ith output component of the vector output. Thus, the integer di is characterized
by the condition [32]:

ciA
di−1B 6= 0 (13)

where ci is the ith row of the matrix C associated to the output yi(k).
After di increments, the ith component of the output vector is:

yi(k + di) = ciA
dix(k) + ciA

di−1B4u(k) + · · ·+ ciB4u(k + di − 1) (14)

From (13) and (14), one can deduce:



y1(k + d1)
...

ys(k + ds)


 =




c1A
d1

...
csA

ds


 x(k) +




c1A
d1−1B
...

csA
ds−1B


4u(k) (15)
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which leads to:



y1(k + d1)
...

ys(k + ds)


 = ∆0x(k) + ∆14u(k) (16)

Regarding [32], the necessary and sufficient condition for decoupling the system

Σ
y∆u+

-

v

∆
−1

1 ∆0

∆
−1

1

Figure1. Decoupled MIMO system

(1) is the invertibility of matrix ∆1.
So, it is possible to apply to system (1) the feedback law

4u(k) = ∆−1
1 (ν(k)−∆0x(k)) (17)

Where ν(k) is the input of the decoupled system depicted in Figure 1.

Let the decoupled system be given by the new representation:

{
x(k + 1) = Āx(k) + B̄ν(k)

y(k) = Cx(k) (18)

where Ā = A−B∆−1
1 ∆0 and B̄ = B∆−1

1 .
Note also that the system is now decoupled in s independent chains of integra-
tors.

3.2 Base-change Matrices

The system being now decoupled, it is possible to fix independently the dynamics
of the s various input-output chains. In this intention, a base-change is carried
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out:




ξ(k + 1) =




ξ1(k + 1)
...

ξs(k + 1)


 = Tx(k + 1)

=




A1

. . .
As


 ξ(k) +




β1

. . .
βs


 ν(k)

y(k) =




γ1

. . .
γs


 ξ(k)

(19)

with

T =
[
T1, · · · , Ti, · · · , Ts

]T (20)

and

Ti =
[
ci, ciA, · · · , ciA

di−1
]T (21)

The new state-space representation is thus expressed in the new base by the
following equation:

{
ξ(k + 1) = Ãξ(k) + B̃ν(k)

y(k) = C̃ξ(k)
(22)

so that

Ã = TĀT−1 (23)
B̃ = TB̄ (24)
C̃ = C̄T−1 (25)

where every triplet (Ai, βi, γi) is given by the controllable canonical form.

3.3 Dynamics Modification of The Decoupled System

The feedback gain K̃i is deduced from the coefficients of the characteristic poly-
nomial (26) determinated by the pole placement:

Φ(z) = zdi + αidi−1z
di−1 + · · ·+ αi0 (26)

It leads to the new form of control expression ν:

ν(k) = −K̃ξ(k) + yd = −K̃Tx(k) + yd = −Kx(k) + yd (27)
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with

K =




α1

. . .
αs


 (28)

where
αi =

[
αi0 αi1 · · · αidi−1

]
(29)

The combination of the decoupling technique with equation (27) transforms the
control equation into:

4u = −∆−1
1 (∆0 + K̃T )x(k) + ∆−1

1 yd (30)

Σ
y∆u+

-

ν

∆
−1

1 ∆0

∆
−1

1

+

-

KT

yd

Figure2. Stabilization of the decoupled MIMO system

If
∑

di = n, the closed-loop control system, shown in the Figure (2), has the
same order of the initial state-space system given by the equation (1). The zero
dynamics does not exist and the problem of non-minimum phase is then solved.
The process (18) is thus observable and controllable.
If

∑
di < n the zero dynamics exists and is stabilized. The system given by

(18) can not represent the totality of the system (1). There are then (n−∑
di)

unobservable modes. It is then important to highlight them (by an adequate
base-change) before applying the pole placement.
According to the nature of the system modes, the control law4u(k) is calculated
to modify the (un)observable modes with(out) vanishing the interaction between
the control laws 4ui(k).

3.4 Finding Prediction Matrices

Once the system is stabilized, the next stage consists in establishing the predic-
tive control for the whole obtained SISO subsystems.
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The criterion to be minimized is:

J =
N2m∑

j=N1

[ŷm(k + j)− ydm(k + j)]2 + λ

Nui∑

j=1

[∆ui(k + j − 1)]2 (31)

where N2m and Nui correspond respectively to the prediction horizons and
the control horizons for each output m = 1, · · · , s and each input i = 1, · · · , q of
the system.
The control law of each subsystem is given by:

4ui(k) = [GT
miGmi − λI]−1GT

mi[ydm(k)−MmiAmix̂(k)−MmiLmiξ(k)] (32)

with

Gmi =




CmiB̃mi

CmiÃmiB̃mi CmiB̃mi

... CmiÃmiB̃mi
. . .

...
...

. . . CmiB̃mi

...
...

...
...

CmiÃ
N2−1
mi B̃mi CmiÃ

N2−2
mi B̃mi · · · CmiÃ

N2−Nu−1
mi B̃mi




Mmi =
[
Cmi CmiÃmi · · · CmiÃ

N2−1
mi

]T
(33)

where the triplets (Ami, Bmi, Cmi) represent the new matrices of the decou-
pled SISO-subsystems.

4 APPLICATION AND RESULTS

As illustrative example of application, the method suggested is used to design
the state space predictive controller of the following unstable MIMO and non-
minimum phase system:

H(z) =




10.2z−10.1
z2−2.031z+1.03 0

0.05084z2+0.00136z−0.05118
z3−3.041z2+3.082z−1.041

10.05
z−1.01


 (34)

The sampling time here is Ts = 0.01s, the equation (34) is written under the
form of the equation (1):





x(k + 1) =




1.0001 0.0102 0
0.0203 1.0306 0
0.0102 0.0103 1.0101


 x(k) +




0.0001 0
0.0102 0
0.0001 0.0101


4u(k)

y(k) =
[

1000 1000 0
0 0 1000

]
x(k) +

[
0 0
0 0

]
4u(k)

(35)
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Here, the relative degrees d1 and d2 of each subsystem are equal to 1.
So:

∆0 =
[

c1A
c2A

]
=

[
1020.4 1040.7 0
10.2 10.3 1010.1

]
(36)

and

∆1 =
[

c1B
c2B

]
=

[
10.2024 0
0.0508 10.0502

]
(37)

which is invertible.
The decoupled system (18) is given by the following matrices:

Ā =




0.9950 0.0050 0
−0.9950 −0.0050 0

0 0 0


 (38)

B̄ = 10−3




0.0050 0
0.9950 0

0 1.0000


 (39)

C̄ =
[

1000 1000 0
0 0 1000

]
(40)

(41)

The zero dynamics is then stabilized.
The first base-change matrix T is given by:

T =




c1

c2

τ


 =




1000 1000 0
0 0 1000
0 1000 0


 (42)

τ must be independent of c1 and c2.





ξ(k + 1) =




0.993 0.004 0
−1.343 −0.154 0

0 0 0.999


 ξ(k) + B̃ν(k)

y(k) = C̃ξ(k)

(43)

The second base-change is used to make the state matrix on controllability
canonical form. The matrix of base-change is given by:

P =




1 0 0
0 0 1
0 1 0


 (44)

The dynamic of the system is fixed now by:

K =
[

0.35 −0.20 0
0 0 −0.999

]
(45)
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The choice of the state feedback gain K leads to the following system:







x1(k + 1)
x2(k + 1)
x3(k + 1)


 =

[
A1 0
0 A2

]


x1(k)
x2(k)
x3(k)


 +

[
B1 0
0 B2

]
yd

y(k) =
[

c1 0
0 c2

] 


x1(k)
x2(k)
x3(k)




(46)

where

A1 =
[

0.993 0.004
−1.343 −0.154

]
(47)

A2 = 0.999 (48)

B1 = 10−3

[
0.005
0.995

]
(49)

B2 = 10−3 (50)

c1 =
[
1000 1000

]
(51)

c2 = 1000 (52)

The results of the analysis carried out in section 3 are important as they show
the convergence of the different outputs of the subsystems (Figures (3) and (4)).
The representation (46) highlights the existence of two decoupled subsystems
Σ1 and Σ2 defined respectively by (A1, B1, c1) and (A2, B2, c2).
The state-space GPC approach defined by (31) and (33) has been applied on each
one of these subsystems, by choosing the increment weighting λ the adequate
control and prediction horizons. The simulation results are shown in Figures
(3) and (4) where yc1, yc2 are the references signals, and y1, y2 are the outputs
signals. For comparison, simulation results obtained by applying the usual state-
space GPC approach on the coupled system (1) are shown in Figures (5) and
(6). In the latter case the lack of decoupling does not permit the oscillations
attenuation despite the optimization of GPC parameters.

5 Conclusion

In this article the synthesis of predictive controller based on state-space approach
is proposed. The method presented here is intended for discrete multivariable
non-minimum phase systems, under the hypothesis that the systems can be de-
coupled.
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Figure3. Output signal y1 of the decoupled subsystems vs. time
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Figure4. Output signal y2 of the decoupled subsystems vs. time

This approach treats separately the closed loops of the various subsystems of
the considered process. The two main advantages are: On the one hand, it leads
to fix independently the dynamics of each subsystem and to compensate the
unstable zeros. On the other hand, it makes possible to optimize separately the
GPC parameters for each subsystem.
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Figure5. Output signal y1 of the coupled subsystems vs. time
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Figure6. Output signal y2 of the coupled subsystems vs. time

Future work will consist in taking GPC with constraints. This point will
permit us to take benefits of all GPC’s advantages [34], [3], [35]. The real-time
algorithm of the resulting controller will be then developed and tested on a
dSpace Simulator.
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