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Abstract. Our objective is to apply the fractional PIλDµ controller to enhance 
the system control performances. Unlike Proportional Integral Derivative 
(PID) controller, there is no systematic and yet rigor design or tuning method 
existing for this PIλDµ controller. In this paper a method to design PIλDµ 
controller is presented. The basic ideas of the tuning method are based, in the 
first place, on the conventional tuning methods for setting the parameters of the 
fractional PIλDµ controller for λ=1 and µ=1 which means setting the 
parameters of the conventional PID controller, and on the minimum Integral 
Squared Error (ISE) criterion for setting the fractional integration action order 
λ and the fractional differentiation action order µ. The simulation results show 
the control quality enhancement using this proposed  PIλDµ controller. 

Résumé. Notre objectif est d’appliquer le contrôleur PIλDµ fractionnaire pour 
perfectionner les performances de commande des systèmes. Par différence au 
contrôleur Proportionnel Intégral Dérivé (PID),  il n’y a aucune méthode 
systématique de conception des contrôleurs PIλDµ. Dans ce papier une méthode 
de  conception du contrôleur PIλDµ est présentée. Les idées de base de la 
méthode de conception sont basées, en premier lieu, sur les méthodes 
conventionnelles de conception pour le réglage des paramètres du contrôleur 
PIλDµ fractionnaire pour λ=1 et µ=1 qui signifie réglage des paramètres du 
contrôleur PID conventionnel, et sur la minimisation du critère de l’intégral du 
carré de l’erreur (ISE) pour le réglage de l’ordre fractionnaire de l’action 
intégral λ et l’ordre fractionnaire de l’action dérivée µ. Les résultats de 
simulation montrent le perfectionnement de la qualité de commande en utilisant 
le contrôleur PIλDµ proposé. 

Keywords. PID controller, Ziegler-Nichols tuning, ISE criteria, Fractional 
order controller, PIλDµ controller. 

Mots-clés. Contrôleur PID, Réglage de Ziegler-Nichols, Critère ISE, 
Contrôleur d’ordre Fractionnaire, Contrôleur PIλDµ. 
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1.   Introduction 

Despite the development of more advanced control strategies, the majority of 
industrial control systems still use PID controllers because they are standard industrial 
components, and their principle is well understood by engineers [1], [2]. The 
development of PID controller tuning dated back to the early work of Ziegler and 
Nichols [3].  

Although all the existing techniques for the PID controller parameter tuning, a 
continuous and an intensive research work is still underway towards system control 
quality enhancement and performance improvement. One of the possibilities to 
improve PID controllers is to use fractional order controllers with fractional order 
differentiation and integration parts.  

Fractional calculus is a generalization of integration and derivation to non-integer 
order fundamental operator  α

ta D  , where a and t are the limits of the operation. The 
two definitions used for the general fractional differintegral are Grunwald definition 
and Riemann-Liouville definition [4]. 

In recent years we observe an increasing number of studies related with the 
application of the fractional calculus (FC) theory in many areas of science and 
engineering [5], [6], and [7]. This fact is due to a better understanding of the FC 
potentialities revealed by many phenomena. In what concerns the area of automatic 
control systems the application of the FC concepts is still scarce and only in the last 
two decades appeared the first applications [8], [9]. 

The first who really introduced a fractional order controller was Oustaloup. He 
developed the so-called Commande Robuste d’Ordre Non Entier (CRONE) controller 
and applied it in various fields of control systems [10]. More recently, Podlubny 
proposed a generalization of the PID controller, namely the fractional PIλDµ  
controller, involving an integration action of a fractional order λ and differentiation 
action of a fractional order µ [11], [12]. Since, many researchers have been interested 
in the use and tuning of this fractional PIλDµ controller [13]–[16]. The interest of this 
kind of controllers is justified by a better flexibility, since it has two more parameters 
which are the fractional integration action order λ and the fractional differentiation 
action order µ. These parameters can be used to fulfill additional specifications for the 
design or other interesting requirements for the controlled system, than in the case of 
a conventional PID controller (λ=1, µ =1). 

In this paper we propose the design of the fractional PIλDµ controller of a classical 
unity feedback control system, where the controller is the fractional PIλDµ controller 
whose transfer function is given as: 
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With KP is the proportional constant, TI is the integration constant, TD is the 
differentiation constant, λ is the fractional integration action order such that 0<λ<2 
and µ is the fractional differentiation action order such that 0<µ<2.  

The equation for the fractional order PIλDµ  controller’s output in time domain is: 
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One of the most important advantages of the fractional PIλDµ controller is its 
possibility for better control of the fractional order dynamical systems. Another 
advantage lies in the fact that the fractional PIλDµ controllers are less sensitive to 
changes of parameters of a controlled system. This due to the fact that having two 
extra degrees of freedom can better adjust the dynamical properties of fractional order 
control systems.  

This paper is organized as follows. Section 2 introduces the basic ideas and the 
derived formulations of the new design method of the fractional PIλDµ controller. In 
section 3, some illustrative examples are presented to demonstrate the control 
enhancement of the design method. In section 4, robustness to model errors of the 
fractional controllers is presented. In section 5, implementation considerations of the 
PIλDµ controller are presented. Finally, section 6 draws the main conclusion.   

2.   Fractional PIλDµ Controller Design 

We propose the design of the fractional PIλDµ controller of a classical unity feedback 
control system shown in Fig. 1: 

 

Fig. 1. Classical unity feedback control system 

The plant’s transfer functions Gp(s) considered is a first order plant with a time 
delay, or a first order plant with an integrator with a time delay, and C(s) is the 
transfer function of the fractional PIλDµ controller of (1).  

2.1. Design of the Parameters KP, TI  and TD  

Our design method is based, in the first place, on any existing classical tuning rules 
for setting the parameters KP, TI and TD of the fractional PIλDµ controller for λ=1 and 
µ=1 which means setting the parameters of a simple conventional PID controller. 
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2.2. Design of the Parameters λ and µ 

The proposed method consists of using the parameters KP, TI and TD obtained in the 
first step for setting the parameters λ and µ minimizing the integral square error (ISE) 
of the classical unity feedback control system of Fig.1 for a unit step input.   

The integral square error (ISE) is given as:   
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Where e(t)=[r(t) – y(t)] is the error signal. According to Laplace transform 
properties the integral J can be written as [17]: 
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From Fig. 1, the error signal E(s) is given as: 
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The settings of the fractional integration action order λ and the fractional 
differentiation action order µ of the fractional PIλDµ controller consists in finding 
these two parameters that minimize the ISE index J of (5). For the minimization task, 
we varied the values of the parameters λ and µ from 0.05 to 1.95 each with a step of 
0.05 and for each value of the couple (λ, µ) we calculate the corresponding ISE index 
J using the Hall-Sartorius method given in [17].  With a simple comparison test of all 
the ISE index J(λ,µ) calculated we can obtain the minimum ISE index J and the 
corresponding optimum settings of the two parameters λ and µ of the fractional PIλDµ 
controller. In order to calculate the complex integral J using the Hall-Sartorius method 
[17], E(s) must be a rational function. But the fractional PIλDµ controller’s transfer 
function C(s) given in (1) is an irrational function and the plant’s transfer function 
Gp(s) is also an irrational function because of the time delay. To circumvent this 
problem, the time delay of the plant’s transfer function Gp(s) is approximated by a 
rational function using the Padé approximation method. 

And the irrational function of the fractional PIλDµ controller C(s) of (1) is also 
approximated by a rational function [18], [19].  

The transfer function of the fractional PIλDµ controller is given in (1), taking λ=1 
and µ=1, we obtain a conventional integer order PID controller. If λ=1, µ =0, we 
obtain PI controller. If λ=0 and µ=1, we have PD controller. All these conventional 
types of PID controllers are the particular cases of the fractional order PIλDµ 
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controller given by (1). Because the orders λ and µ can be arbitrary real number, the 
fractional order PIλDµ controllers is more flexible and given an opportunity to better 
adjust the dynamical properties of systems. If µλ ≠ the relation of (1) becomes: 
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In the final expression of (7) it can be noted the presence of zeros that are related to 
(1). Taking into account the previous discussion, the asymptotic magnitude Bode 
diagram of the fractional order PIλDµ controller in (1) can be obtained.  

The exact diagrams of the PIλDµ (magnitude and phase) are reported in Fig. 2. 

 

Fig. 2. An example of PID (solid line) and PIλDµ  (dashed line, with λ=0.8, µ =0.7 )  magnitude 
and phase plot 

Next statements are important to be considered. First of all, the fact of being λ< 1 
makes the output converge to its final value more slowly than in the case of an integer 
controller. Furthermore, the fractional effects need to be band-limited when it is 
implemented. Therefore, the fractional integrator must be implemented as 

λλ −= 1)/1(/1 sss , ensuring this way the effect of an integer integrator s/1  at very low 

frequency. Similarly to the fractional integrator, the fractional differentiator, 
µ

s , has 
also to be band-limited when implemented, ensuring this way a finite control effort 
and noise rejection at high frequencies.  

On the other hand, when fractional controllers have to be implemented or 
simulations have to be performed, fractional transfer functions are usually replaced by 
integer transfer functions with a behaviour close enough to the one desired, but much 
easier to handle. There are many different ways of finding such approximations but 
unfortunately it is not possible to say that one of them is the best, because even 
though some of them are better than others in regard to certain characteristics. 
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In this work one way to approximate fractional order operators to an integer 
transfer function have been used: the Singularity Function Approximation [18]. 

With λ and µ are such that 0 < λ < 2 and 0 < µ < 2, there are four cases depending 
on the parameters λ and µ: 
• Case 1:  0 < λ < 1 and 0 < µ < 1: The rational function approximation of C(s), in a 

given frequency band of practical interest [ωL, ωH], is given as: 
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• Case 2:  1 < λ < 2 and 0 < µ < 1: The rational function approximation of C(s), in a 

given frequency band of practical interest [ωL, ωH], is given as: 
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• Case 3:  0 < λ < 1 and 1 < µ < 2:The rational function approximation of C(s), in a 

given frequency band of practical interest [ωL, ωH], is given as: 
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• Case 4:  1 < λ < 2 and 1 < µ < 2: The rational function approximation of C(s), in a 
given frequency band of practical interest [ωL, ωH], is given as: 
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3.   Illustrative Examples 

This section shows the application of the results obtained for the design of the 
fractional PIλ/PIλDµ controller for two selected plants. 

3.2.   First Order Plant with Delay 

The plant’s transfer function is Ls
p e

τs)(
K

G −

+
=

1
0  se

s
5.0

)1(
1 −

+
=  [20]. In [20], a 

conventional PI controller (λ = 1, µ = 0 and TD=0) is used to control the above plant. 
Using the Refined Ziegler-Nichols tuning method, the PI controller’s parameters KP, 
TI are found to be KP = 0.73 and TI = 0.69. Hence, the conventional PI controller’s 
transfer function C1(s) is given as: 
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The smallest ISE index J of section 2 is obtained for the parameter λ = 0.95. Then 
the fractional PIλ controller’s transfer function C2(s) required is given as: 
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In this example of application, the implementation of the fractional PIλ controller 
has been in a frequency band from 0.01ωu to 100ωu, where ωu is the unity gain 
crossover frequency of the open loop transfer function  C(s)Gp(s) when C(s) is a 
conventional PI controller.  

Fig. 3 shows the Bode plots of the open loop transfer function C(s)Gp(s)  when 
C(s) is the conventional PI controller C1(s) and when C(s) is the fractional controller 
C2(s) in its rational function form. 

Fig.4 shows the step responses of the closed loop system when C(s) is the 
conventional PID controller C1(s) and when C(s) is the fractional controller C2(s) in 
its rational function form. 
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Fig. 3. Bode plots of the open loop transfer function C(s)Gp(s) with C(s) the PI controller C1(s) 
(Dotted line) and C(s) the proposed PI0.95 controller C2(s) (solid line). 

 

Fig. 4. Step response of the closed loop system C(s) the PI controller C1(s) (Dotted line) and 
C(s) the proposed PI0.95 controller C2(s) (solid line) 

Some performances characteristics for the feedback control system with both 
controllers, are summarized in Table 1, in terms of the unity gain crossover frequency 
ωu, the phase margin PM, the gain margin GM, the settling time ts, and overshoot P. 

As it can be seen from Table 1, the unity gain crossover frequency has been 
changed by 1.51 %.We can also see that the settling time with the fractional PI0.95 
controller is 16.26% smaller than with the conventional PI controller and the 
overshoot with the fractional PI0.95 controller is 33.33% smaller than with the 
conventional PI controller. 
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Table 1. Performances characteristics for the conventional PI and the fractional PI0.95 
controllers 

C(s) ωu (rad/s) PM (deg) GM (dB) ts (s) P (%) 
PI 0.922 53.8 13.5 4.12 12 
PI0.95 0.936 57.2 12.9 3.45 8 

3.2.   First Order Plant with Integrator and Delay 

The plant’s transfer function, in this case is taken from [21]. 
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For λ=1, µ=1 and using the Ziegler-Nichols tuning method, the controller’s 
parameters KP, TI and TD are found to be KP = 0.444, TI = 6, TD = 1.5, [21]. Hence, 
the conventional PID controller’s transfer function C1(s) is given as: 
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The smallest ISE index J of section 2 is obtained for the couple (λ, µ)= (0.1, 1.1). 
Then the fractional PIλDµ controller’s transfer function C2(s) required is given as: 
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As it can be observed, this controller behaves similarly to a PD controller, since the 
order of the integral part is very low (λ=0.1). However, the fractional integral part 
guarantees a null steady state error.  

The implementation of the fractional integral and derivative parts is carried out as 
commented in the previous example. 

Fig.5 shows the Bode plots of the open loop transfer function C(s)Gp(s) when C(s) 
is the conventional PID controller C1(s) and when C(s) is the fractional controller 
C2(s) in its rational function form. 

Fig.6 shows the step responses of the closed loop system when C(s) is the 
conventional PID controller C1(s) and when C(s) is the fractional controller C2(s) in 
its rational function form.  

Some performances characteristics for the feedback control system with both 
controllers C1(s) and C2(s) are summarized in Table 2, it can be seen that the phase 
margin has been augmented by 33.38% and the gain margin has increased by 05.40%. 
We can also see that the settling time and the overshoot with the fractional PI0.1D1.1 
controller are smaller than with the conventional PID controller. 
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Fig. 5. Bode plots of the open loop transfer function C(s)Gp(s) with C(s) the PID controller C1(s) 
(Dotted line) and C(s) the proposed PI0.1D1.1 controller C2(s) (solid line). 

 

Fig. 6. Step response of the closed loop system C(s) the PID controller C1(s) (Dotted line) and 
C(s) the proposed PI0.1D1.1 controller C2(s) (solid line). 

Table 2. Performances characteristics for the conventional PID and the fractional  PI0.1D 1.1 
controllers 

C(s) ωu (rad/s) PM(deg) GM (dB) ts (s) P (%) 
PID 0.361 38.5 14.80 22.8 41.00 
PI0.1D1.1 0.414 53.0 15.60 10.1 14.00 
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4.   Robustness to Model Errors 

One of the important properties of any controller tuning method is its robustness to 
model errors. In order to evaluate the robustness of the proposed tuning method, we 
have evaluated the closed loop responses achieved by the fractional PIλDµ controllers 
when this controller is applied to a model that is slightly different from the nominal 
model Ga(s) with which this controller was computed (tuned). 

As cases of study we take the plant’s transfer function defined in section 3. The 
three slightly different models used are given as follows: 
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In order to evaluate the robustness of the proposed fractional PIλDµ controller 
tuned with our method and to compare it with the other method, the same fractional 
PIλDµ and conventional PID controllers’ parameters in section 3 were employed. 
Firstly, the responses to the model (17), in which the steady state gain of (14) is 
increased by 20%, are shown in Fig.7.  

 

Fig. 7. Step response of the closed loop system C(s) the PID controller C1(s) (dotted line) and 
C(s) he proposed PI0.1D1.1 controller C2(s) (solid line), with static gain variation: 1.2 

Secondly, the time constant is changed in (18) and its result is shown in Fig. 8. 
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Fig. 8. Step response of the closed loop system C(s) the PID controller C1(s) (Dotted line) and 
C(s) the proposed PI0.1D1.1 controller C2(s) (solid line), with time constant variation:  2.4. 

 

Thirdly, the time delay of is changed in (19), and the responses are shown in Fig. 9. 
 

 

Fig. 9. Step response of the closed loop system C(s) the PID controller C1(s) (dotted line) and 
C(s) he proposed PI0.1D1.1 controller C2(s) (solid line), with time delay variation: 1.2 

From the results obtained in the case of study, it can be concluded that the 
compensated systems using the proposed fractional PIλ and PIλDµ controllers are 
robust to changes of the static gain and time constant, since variations of the 
performance characteristics for different values of static gain and time constant are 
lower for the fractional PIλ and PIλDµ controllers. In short, it can be said that the use 
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of the fractional PIλ and PIλDµ controllers provide better responses and robust 
systems. 

5.   Implementation Considerations 

In spite of using the classical Ziegler-Nichols tuning rules for setting the 
parameters KP, TI and TD for λ=µ=1 of the fractional PIλDµ controller, our proposed 
conception method can use any other classical parameters tuning technique. Therefore 
we can use directly the KP, TI and TD parameters of any PID controller of the 
feedback control system under investigation for performances enhancement. As the 
PID controllers are the most commonly used in practically all industrial feedback 
control applications, then our conception method of the fractional PIλDµ controller 
will be very suitable for already tuned PID controllers. So implementation 
considerations of the fractional PIλDµ controller with already existing PID controllers 
will be presented. Suppose that we have an already tuned classical unity gain 
feedback control system with a regular PID as a controller. This regular PID 
controller’s transfer function is given as: 
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Where KI=Kp/TI and KD= KpTD. The structure of the PID controller of equation 
(20) consists of the parallel connection of the proportional, integral and derivative 
parts as given in Fig. 10.  

 

Fig. 10. Structure of the conventional PIλDµ controller 

In our design method, we said that we can use directly the already tuned 
parameters KP, TI and TD of the PID controller of the feedback control system under 
investigation to set the fractional integration action order λ (0<λ <2) and the 
fractional differentiation action order µ (0<µ <2) of the PIλDµ controller. Once the 
parameters λ and µ calculated the PIλDµ controller’s transfer function is given as:  
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And the structure of this fractional PIλDµ controller of equation (21) consists of the 
parallel connection of the proportional, fractional integral and fractional derivative 
parts as given in Fig. 11. 

 

Fig. 11. Structure of the fractional PIλDµ controller 

 And because we want to use the already existing PID controller to implement our 
fractional PIλDµ controller therefore we will transform the fractional PIλDµ 
controller’s transfer function of equation (21) to the following equation:  
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It means we just implement the fractional order differentiator )1( λ−s  (0<λ <2) in 
cascade with the already implemented regular integration action KI/s of the regular 
PID controller to obtain the fractional order integration action KI/sλ of the fractional 
PIλDµ controller and the fractional order integrator )1(/1 µ−s  (0<µ<2) in cascade with 
the already implemented regular differentiation action KDs of the regular PID 
controller to obtain the fractional order differentiation action KDsµ of the fractional 
PIλDµ controller. Therefore the new internal structure of the fractional PIλDµ 
controller of Fig. 11 with these fractional order operators will be as given in Fig .12. 

 

 

                  

Fig. 12. New Structure of the fractional PIλDµ controller 
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6.   Conclusions 

A new design method of the fractional PIλDµ controller is presented towards 
system control quality enhancement and performances improvements for a classical 
unity feedback control system. The basic ideas are based on the classical Ziegler-
Nichols tuning rules for setting the parameters KP, TI and TD for λ=1, µ=1 and on the 
minimum ISE criterion by using the Hall-Sartorius method for setting the parameters 
λ and µ. The formulations of this new tuning method have been derived using the 
rational function approximation of the fractional integrator and differentiator 
operators, in a given frequency band of practical interest.  

Through two types of plant models, the fractional order PIλ/PIλDµ controllers 
design by the proposed method has been demonstrated. The simulation results 
illustrate that fractional PIλ   and PIλDµ controllers achieve better control performance 
with the proposed design method and better robustness to error models. 

 Our design technique will be very suitable for already conventional tuned PI and 
PID controllers.  
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