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Abstract.  In this paper, we address the problem of structure and parameter 
identification of Volterra models driven by symmetric input with four levels. It 
consists in estimating the model order, the memory length of each kernel and the 
parameters. The proposed approaches are based on the crosscumulants between 
the input and the output using the statistics proprieties of the input sequence. The 
structure identification method consists in estimating the order of the Volterra 
model that will be used to identify the length of each kernel. A closed form solu-
tion has been developed to estimate the parameters of the Volterra models. Simu-
lations are presented to illustrate the performance of the proposed methods. 

keywords. Structure Identification, Parameter Estimation, Cross-cumulant, Vol-
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1.   Introduction 
The truncated Volterra model has been the most popular since it can represent any 
nonlinear system time invariant with fading memory [1]-[5]. Moreover, the parameters 
of this model are linearly related to the output which allows the extension of some 
results of linear systems to nonlinear ones [12], [19]. For these reasons, the truncated 
Volterra model has found applications in many fields such as signal processing and 
control [1], [12], [15], [17], [19], [22].  

Two main problems must be taken into account for the identification of truncated 
Volterra model: one is the identification of the model kernels and two is the identifica-
tion of the model structure defined by the model order and the kernel memory lengths. 
Several methods have been proposed in the literature for the identification of the ker-
nels of Volterra models [6]-[12]. They can be classified into two great families. The 
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methods of the first family consist in expressing the parameters of the model in func-
tion of the output and input signals (cumulants, polyspectras, crosscumulants) [5], [6], 
[21], [24], [25]. These methods are very interesting from a theoretical point of view 
because they show the possibility of identifying the system from only the knowledge 
of the statistics of the output and input signals. The methods of the second approach 
exploit the property of linearity of the Volterra models to their parameters. This makes 
it possible to extend the identification algorithms of the linear models, like RLS and 
LMS algorithms, to the Volterra models [12], [19].   

For the sake of simplicity, the existing methods suppose that the structure of the model 
is a priori known. So, the problem of structure identification did not attract much atten-
tion and few solutions were proposed in the literature [11]. These solutions treat par-
ticular cases, for example, the approach suggested in [11] is valid only for the quad-
ratic Volterra model. Recently, a structure identification of Volterra models excited by 
Gaussian input has been proposed in [13]. 

The excitation signal represents, also, a fundamental problem for the identification of 
Volterra systems. Most of the existing methods suppose that the input signal is Gaus-
sian. This type of signal is very interesting from a theoretical point of view. However, 
it is not recommended in practice because it requires a relatively high number of meas-
urements. Moreover, it causes the wear of the actuators. To overcome this problem, 
new sequence, namely “plant friendly”, has been developed for the excitation of the 
Volterra models [23]. This sequence supposes the knowledge of the structure of the 
model. Indeed, it contains (r+1) levels where r represents the model order [18]. This 
excitation allows the identification of the linear diagonal and under diagonal parame-
ters of the Volterra model. The other parameters are estimated using a random binary 
sequence. This solution presents the possibility of identifying the parameters using an 
explicit solution. Moreover, it insures very satisfactory results in simulation with mod-
els having modest order and memory lengths. However, its performance degrades with 
the increase in the complexity of the model. This is due to the propagation of the errors 
in estimation.  

In this work, we address the problems of identification of the structure and the parame-
ters of Volterra models excited by symmetric input with four levels are addressed. This 
input insures the identifiabilily of the parameters of second and third order Volterra 
models [18].  Moreover, it allows to overcome the problems of Gaussian sequence in 
practical situations. 

This paper is organized as follows. Section 2 presents the model and its assumptions. 
The basic relations are described in section 3. Section 4 and 5 propose the structure and 
the parameters algorithms. Results of simulations are presented in the last section. 

2.   Problem formulation 
In the following section, we address the problem of estimating the order, the memory 
lengths and the parameters of a discrete, causal stationary Volterra system described 
by: 
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where ( ){ }nu  is the input sequence, r is the Volterra  model order, ( )⋅ih  are the coef-
ficients of the ith order Volterra kernel with memory iK  and ( ){ }nx  is the noiseless 
output sequence.  
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The observed output process  ( ){ }ny   is given by: 

( ) ( ) ( )nvnxny +=  (3) 

where ( ){ }nv   is the noise sequence. 
 
The following assumptions are assumed to be verified: 
 
A1. The input sequence ( ){ }nu  is zero mean, independent and identically distributed 
(i.i.d), stationary process and symmetric with four levels. 
A2. The additive noise ( ){ }nv  is independent from the input sequence and with un-
known variance. 
A3. The Volterra Kernels ( )iih τττ ,,, 21  are absolutely summable sequences. More-
over ( )i21i ,,,h τττ  for 2≥i  are symmetric, that is : 
( ) ( )( )i21ii21i ,,,h,,,h τττπτττ =   

where ( )⋅π  is a permutation function. 
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Next, we recall the definition of cumulants. Let ( )Tk21 v,,v,vV =  be a complex 

vector and T
k21 ) ,..., ,(= xxxX  a random vector with kjxE

k

j ,,1, =∞< . The pth 

order cumulant of these random variables is defined as a coefficient of kvvv ,,, 21  in 
the Taylor series expansion of the cumulant generating function 

( ) ( ){ }( )XjVexpELnV T
X =Ψ . The pth order cumulant sequence of a stationary random 

signal ( ){ }kx  is written as [16]-[19]:  

( ) ( ) ( ) ( )( )p,x 1 2 p 1 1 p 1C , , , Cum x n ,x n , ,x nτ τ τ τ τ− −= + +  (4) 

 
Cross-cumulants are defined in a similar way: 

( ) ( ) ( )( ( ))1 2 pp ,x ,x , ,x 1 2 p 1 1 2 1 p p 1C , , , Cum x n ,x n , ,x nτ τ τ τ τ− −= + +  (5) 

3. Basic relations 
If the input ( )u k  is a symmetric sequence, the mth order moments and cumulants 
are defined as [3]: 

( ) ( ) ( ) ( ), 1 2 1 1 1, , , , , ,m u m mMom Mom u k u k u kτ τ τ τ τ− −⎡ ⎤= + +⎣ ⎦  (6) 

( ) ,
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(7) 

The second, fourth and sixth order cumulants of the input are expressed as follows: 
 

( ) ( )2, 2, 2,0 0u u uC Momγ = =  (8) 

( ) ( ) ( )( )2

4, 4, 4, 2,0,0,0 0,0,0 3 0u u u uC Mom Momγ = = −  (9) 

( )
( ) ( ) ( ) ( )( )
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0,0,0,0,0 15 0,0,0 0 30 0
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C
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 (10) 

 
For second order Volterra model, the cross-cumulants between one copy of the 
output and i copies of the input are given by:  

( ) ( )y ,u 1 2,u 1 1C i h iγ= −  (11) 

( ) ( ) ( ) ( )2
, , 1 2 2, 2 1 2 4, 2 1 2 1 2, 2 , ,y u u u uC i i h i i h i i i iγ γ δ= − − + − − −  (12) 

( ) ( ) ( ) ( )y ,u ,u ,u 1 2 3 4,u 1 1 2 1 3 1C i ,i ,i h i i i i iγ δ δ= − − −  (13) 
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The cross-cumulants between one copy of the output and i copies of the input, 
in the case of the third order Volterra model, are given by:  
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4. The proposed structure identification method 
This paragraph proposes a method for the structure identification of Volterra models 
excited by symmetric input with four levels. This approach consists in estimating the 
order of Volterra model that will be used to determine the kernel memory lengths.  
Firstly, we present the principle of the proposed method and secondly, we describe a 
reformulation allowing to improve its performance. 

 
4.1.  Principle 

The proposed method is based on the crosscumulants and the statistics proprieties of 
the input sequence using the vanished statistical input-output information. For exam-
ple, the values of ( ),y xC τ

 
 are equal to zero for all 1Kτ > where 1K  represents the 

memory length of the first kernel. 
The principle of the proposed method can be summarized by the following steps: 

 
Step 1 : Identification of the Volterra model order 
�Construct the diagonal matrix Md defined by:  
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Using the relation (11), (13) and (14), it is obviously to deduce that the matrix 

Md is defined as follows in the case of second order Volterra model: 

( )1

1 0 0
Md h 0 0 1 0

0 0 1

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

 
 

 
Consequently, we can use the following algorithm to identify the order 
If  Md  is proportional to the identity matrix, then: 

• Model order=2; 
• goto step 2; 

Else 
• Model order=3; 
• goto step 3; 

 
Step 2: Identification of memory lengths 1K  and 2K  of second order Volterra 

model  
� Identification of the memory length 2K of the second kernel using  the follow-

ing condition : 
( ) ( ) { }y,u,u 1 2 1 2 2C , =0  for all , 0,1, ,Kτ τ τ τ− − − − ∉

 
� Identification of the memory length 1K of the first kernel using the following 

condition : 
( ) { }y,u 1 1 1C =0  for all 0,1, ,Kτ τ− − ∉  

Step 3: Identification of memory lengths 1K , 2K  and 3K of third order Volterra 
model 
� Identification of the memory length ( )1 3K max K ,K=  using  the following 

condition : 
( ) { }y,u 1 1C =0  for all 0,1, ,Kτ τ− − ∉  

�  Identification of the memory length S  the following condition : 
( ) ( ) { }y,u,u,u 1 2 1 2C 0, , 0  for all , 0,1, ,Sτ τ τ τ− − = − − ∉  

•  If ( )1 3S 1 max K ,K− ≥  then ( )1 3 1 3K K max K ,K= =   

•  Else ( )3 1 1 3K S 1  et K max K ,K= − =  
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� Identification of the memory length 2K  using the following condition : 

( ) ( ) { }y,u,u 1 2 1 2 2C , =0  for all , 0,1, ,Kτ τ τ τ− − − − ∉
 

4.2. Reformulation of the proposed method 

This method gives correct results when cross-cumulants are known. However, in 
practice, the cross-cumulants are estimated from the data. Consequently, the exact 
cross-cumulants are unknown and they can not be estimated correctly. Therefore, if 
additional samples of cross-cumulants are used then better results can be expected. In 
fact, we will propose another formulation of the steps 2 and 3 using more cross-
cumulant samples. This formulation is based on the following cross-cumulants ma-

trixes ( )1M , ( )2M  and ( )3M  and the test variable ( )Mat kλ  :  
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where  
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l

t
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The test variable ( )Mat kλ  converges to 1. In fact, it attains 1 at the first time for k> k1 
where k1 indicates the desired memory length.  
 
The reformulation of steps 2 and 3 can be expressed as follows:  
 
Step 2— Identification of memory lengths 1K  and 2K  of second order Volterra model  

� Determine the smallest integer l verifying ( ) ( ) 11 =l
M

λ  so 11 −= lK  

� Determine the smallest integer k for which ( ) ( )k
M 2λ  attains the unity so 

12 −= kK  
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Step 3— Identification of memory lengths 1K , 2K  and 3K of second order Volterra 

model 
� Determine the smallest integer k verifying ( ) ( )1M

k 1λ =  so

 ( )1 3max K ,K k 1= −  

� Determine the smallest integer s for which the test variable ( ) ( )s
M 3λ  of the 

matrix ( )3M  attains the unity; 
• If ( )1 3s 1 max K ,K− ≥ , ( )213 ,max KKK =  and  we suppose that 

31 KK = . 
• Else ( )3113 ,max&1 KKKsK =−= . 

� Determine the smallest integer l which verifies ( ) ( ) 12 =l
M

λ  so that 

 12 −= lK  

5. Parameter estimation method 
This paragraph suggests an explicit solution for the identification of the kernels of 
second and third order Volterra models excited by a symmetric input with four levels.  

5.1. Second order Volterra model  

Using (11) and (12), we deduce: 
- Linear kernel Volterra model  

( ) ( ), 1
1 1

2,

y u

u

C m
h m

γ
−

=    1 11for m K≤ ≤  

- Quadratic kernel Volterra model 

( ) ( )
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, , 1 2
2 1 2 2

2, 4, 1 2

,
,

2
y u u

u u

C m m
h m m

m mγ γ δ
− −

=
+ −

 1 2 20 ,for m m K≤ ≤  

5.2. Third order Volterra model  

Using (15), (16) and (17), we deduce: 

- Cubic kernel Volterra model  
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3 1 2 3 1 2 33
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6
y u u u
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- Quadratic kernel Volterra model 

( ) ( )
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2
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C m m
h m m
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=
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- Linear kernel Volterra model  
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3
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1 1 2, 3 1 3 1 1 1
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3 , , , ,
K

y u u
u

lu u
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−
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6. Simulation results 

The objective of the simulations is to illustrate the performance of the proposed meth-
ods. The simulations are performed under the following conditions: 
- The input signal u(n) is zero mean, independent and identically distributed se-

quence with four levels. 
- The additive colored noise v(n) is simulated as the output of MA(p) model driving 

by a Gaussian sequence w(n). 
- The Signal to Noise Ratio (SNR) is defined as : 

( )
( ){ }
( ){ }⎥⎦

⎤
⎢
⎣

⎡
=

nvE
nxESNR dB 2

2

10log10  

- The parameters were obtained from 500 Monte Carlo runs, where N data are used 
to estimate the crosscumulants. 

The mean ( )µ , the standard deviation ( )σ  and the normalized mean square error 
(NMSE) values are considered to study the performance of each method: 

( )∑
=

=
MCN

k
k

MC
)i( iˆ

N 1

1 θµθ

,  
( )( )MCN 2

( i ) ( i )k
MC k 1

1 ˆ i
Nθ θσ θ µ

=
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10
2
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10log
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i

dB

i

i i
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i

θ θ

θ

⎛ ⎞−⎜ ⎟
= ⎜ ⎟

⎜ ⎟⎜ ⎟
⎝ ⎠

∑

∑
 

where ( )kiθ̂ is a ith coefficient of the Volterra kernel estimated in the kth iteration for 
each simulation, ( )iθ  is an exact ith coefficient of the Volterra model and NMC is the 
number of Monte Carlo simulations. 
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Four simulation examples, presented in tables 1 and 2, are selected from literature [12], 
[19].  

Table 1. Characteristics of selected models: order and memory 

 order 1K  2K  3K  
Model 1 2 2 3 --------- 
Model 2 2 3 2 --------- 
Model 3 3 3 2 2 
Model 4 3 2 3 2 

Table 2. Model Coefficients. 

 ( ):h1  ( ):,:h2   

M
od

el
 2

 1
0.5

 0.66
0.78

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥−
⎢ ⎥
−⎢ ⎥⎣ ⎦

 
0 0.15 0.1

0.15 0.5 0.5
0.1 0.5 0.4

−⎡ ⎤
⎢ ⎥− −⎢ ⎥
⎢ ⎥−⎣ ⎦

 
 

M
od

el
 3

 1
0.5

 -0.66
-0.78

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 
0.5 0.43 -0.9
0.43 0.12 0.7
-0.9 0.7 0.1

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

  

 ( )03 ,:,:h  ( )13 ,:,:h  ( )23 ,:,:h  

M
od

el
 2

 

------------------------ ------------------ ------------------ 

M
od

el
 3

 

0.5 0.2 3 0.1 3
0.2 3 0 -0.5 6
0.1 3 -0.5 6 -0.1

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 
0.2 3 0 -0.5 6

0 1 0.4 3
-0.5 6 0.4 3 0

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 
0.1 3 -0.5 6 -0.1
-0.5 6 0.4 3 0

-0.1 0 -0.7

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

6.1. Model structure identification 

The first step of the second method consists in estimating the order of the Volterra 
model. Therefore, we must estimate ( ), 2,0 /y u uC γ , ( ), , , 4,0,0,0 /y u u u uC γ  and 

, , , , , 6,/y u u u u u uC γ  for each model. The estimation of these statistics information are given 
in table 3. 
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Table 3. Estimation values of 1Md , Symmetric Input, SNR=10dB, N=1000. 

 Model1 Model2 Model3 Model4 

di
ag

(M
d1

) 

1.0000 ± 0.1073 
0.9982 ± 0.1037 
0.9976 ± 0.1053 

0.9970 ± 0.0919 
0.9985 ±  0.0955 
0.9989 ± 0.0988 

3.5939 ± 0.3608 
3.1760 ± 0.3650 
3.0474 ±  0.3760 

3.6187 ± 0.3079 
3.1946 ± 0.3163 
3.0641 ± 0.3291 

 
For the two first models, we remark that the matrix 1Md  is proportional to the unity 
matrix and consequently model 1 and model 2 are second order Volterra model. How-
ever, the elements of ( )1diag Md  are different for model 3 & model 4. We can deduce 
that these models are third order Volterra models. 

 

1 2 3 4 5 6

0.4

0.6

0.8

1

K1 estimation

la
m

da
M

(j=
1)

1 2 3 4 5 6
0

0.5

1

K2 estimation

la
m

da
M

(j=
2)

model1
model2

model1
model2

 

Fig 1. Estimation values of ( ) ( )jM
λ ⋅ , Symmetric Input, SNR=10dB, N=1000, Models 1&2. 

Applying the second step of algorithm 2, we can estimate the values of 1K  and 2K  
for models 1 and 2. Analyzing the simulation results given in figure 1, we deduce that: 

1 2model 1K = , 2 3model 1K = , 1 3model 2K =  and 2 2model 2K =  
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Step 3 of the second algorithm concerns the third order Volterra models: it's the case of 
models 3 and 4. Using ( ) ( )⋅1M

λ  and ( ) ( )⋅2M
λ , we can estimate 2K  and 

( )1 3K max K ,K= : 

2 2model 3K = , 3model 3K = , 2 3model 4K =  and 2model 4K =  
In this case we must estimate ( )3M  (figure 2): 
For model 3, ( ) ( )k

M 3λ  attains the unity for 3 1model 3k K= < +  which implies that 

1 3model 3K =  and 3 2model 3K = . 

For model 4, ( ) ( )k
M 3λ  attains the unity for 3 1model 4k K= = + which implies that 

3 2model 4K =  if  we suppose that 1 2model 4K =  
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2. Estimation values of ( ) ( )jM

λ ⋅ , Symmetric Input, SNR=10dB, N=1000, Models 3&4. 
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6.2. Model parameter estimation 

Table 4. Parameter estimation, Model 2, symmetric Input, 500 Monte Carlo runs, N=1000 

SNR 0dB 10dB 

 Mean Standard 
deviation Mean Standard 

deviation 
h1(1)= 0.5000 
h1(2)= -0.6600 
h1(3)= -0.7800 

h2(0,0)= 0 
h2(0,1)= -0.1500 
h2(0,2)= 0.1000 
h2(1,1)= 0.5000 
h2(1,2)= -0.5000 
h2(2,2)= 0.4000 

0.4958    0.1143 
-0.6506    0.1207 
-0.7846    0.1368 
0.0036    0.0732 
-0.1490    0.0322 
0.1017    0.0330 
0.4985    0.0708 
-0.4989    0.0280 
0.3972    0.0746 

0.4967    0.0710 
-0.6562    0.0835 
-0.7750    0.0948 
0.0020    0.0503 
-0.1480    0.0272 
0.1000    0.0290 
0.4994    0.0570 
-0.4971    0.0190 
0.3962    0.0520 

NMSE(dB) -42.8293 -45.3260 

Table 5. Parameter estimation, Model 3, 500 Monte Carlo runs, N=1000, SNR=10dB 

 Symmetric Input 

 Mean Standard 
deviation 

h1(1)= 0.5000 
h1(2)= -0.6600 
h1(3)= -0.7800 
h2(0,0)= 0.5000 
h2(0,1)= 0.4300 
h2(0,2)= -0.9000 
h2(1,1)= 0.1200 
h2(1,2)= 0.7000 
h2(2,2)= 0.1000 

h3(0,0,0)=  0.5000 
h3(0,0,1)= 0.0667 
h3(0,0,2)= 0.0333 

h3(0,1,1)= 0 
h3(0,1,2)= -0.0833 
h3(0,2,2)= -0.1000 
h3(1,1,1)= 1.0000 
h3(1,1,2)= 0.1333 

h3(1,2,2)= 0 
h3(2,2,2)= -0.7000 

    0.6405    1.3833 
   -0.7071    1.7166 
   -0.7912    0.4620 
    0.4888    0.2281 
    0.4233    0.0876 
   -0.8924    0.1012 
    0.1092    0.1718 
    0.7028    0.0940 
    0.0805    0.2321 
    0.4934    0.1589 
    0.0639    0.0355 
    0.0355    0.0395 
   -0.0004    0.0501 
   -0.0829    0.0135 
   -0.1035    0.0399 
    0.9937    0.1221 
    0.1346    0.0505 
   -0.0044    0.0382 
   -0.7010    0.1652 

NMSE(dB) -23.2352 
 

We can remark the following observations from tables 4 and 5 : 

- A large number of data N is necessary to improve the performance of the proposed 
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methods because they use high order cumulants and cross-cumulants. 

- The explicit expression of ( )2 1 2,h m m  if 1 2m m=  contains an additional term as 
compared to that with 1 2m m≠ . Therefore, diagonal kernels estimation tends to 
have a large standard deviation. 

- The ‘best’ performances are obtained for the cubic kernel if 1 2 3m m m≠ ≠ . The 
estimation of ( )3 1 2 3, ,h m m m  for 1 2 3m m m= = ,  necessitate the use of more addi-
tional terms, leading to a large standard deviation. 

- The estimation of ( )1 1h m  for the symmetric input depends on the estimation of 
the cubic kernel. In fact, the explicit relationship of the linear kernel for the third 
order Volterra contains ( )3 1 2 3, ,h m m m  terms for i jm m=  ({ } { }, 1, 2,3

i j
i j

≠
∈ ), 

which confirm the large value of standard deviation for the estimation of the linear 
kernel. 

 

7. Conclusion 

In this paper, we have addressed the problem of structure and parameter identification 
of Volterra models driven by symmetric input with four levels. Obviously, this se-
quence insures the identifiability of the parameters of second and third order Volterra 
models. The proposed methods are based on the crosscumulants between the input and 
the output and the statistics proprieties of the input sequence. The proposed structure 
identification method consists in estimating the order of the Volterra model that will be 
used to identify the length of each kernel. Our method can be used to identify Volterra 
model structure having different kernel memory lengths. Moreover, a closed form 
solution has been developed to estimate the parameters of Volterra models. Simula-
tions are presented to illustrate the performance of the proposed methods. 
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