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Abstract. This paper deals with the weighted minimum-variance self-tuning 
regulation of stochastic time-varying systems, which can be described by 
linear input-output mathematical models. We consider the input-output 
ARMAX mathematical models with unknown time-varying parameters. The 
recursive extended least squares RELS algorithm, which can be applied to the 
stochastic time-varying systems, is presented. Self-tuning regulators are 
developed on the basis upon the weighted minimum-variance control strategy. 
The developed theoretical results are applied to a heat transfer process. The 
obtained practical results show the good performances of the developed 
weighted minimum-variance self-tuning regulators. 
Key words: Stochastic time-varying systems; Input-output ARMAX 
mathematical models; Weighted minimum-variance self-tuning regulation; 
Heat transfer process. 

1.  Introduction 

The object of this paper is the development of weighted minimum-variance self-
tuning regulators, which can be applied to the stochastic time-varying systems. We 
consider the dynamic systems, which can be described by an input-output 
mathematical model, linear, stochastic, monovariable, with unknown time-varying 
parameters. 

The traditional controllers with fixed parameters are often unsuited to industrial 
processes because of the change of their parameters resulting on their stochastic 
character. One possible alternative for improving the quality of control for such 
processes is the use of adaptive control systems Bobál et al. (2005).  

The study of the problems relating to the regulation of the dynamic systems 
operating in a stochastic environment has worried several control engineers in 
various research teams, and this, for numerous decades. In this context, several types 
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of regulators were developed and published in the literature, while being based on 
various control strategies (minimum-variance control, PID, self-tuning PID 
controller, self-tuning control etc.), see for example, Åström and Wittenmark 
(1973), Åström et al. (1977), Ben Abdennour et al. (2001), Wieslander and Zarrop 
(1991), Isermann et al. (1992), Li and Evans (2002), Kamoun (2003), Kharrat et al. 
(2005), Petete et al. (2008) and Zulfatman and Rahmat (2009). 

Many researchers have proved that it’s possible, for stationary processes, to 
determine the unknown parameters through identification. However, the 
experiments and the evaluation can be rather time consuming. It’s thus desirable to 
design self-tuning regulators which tune their parameters on-line. Indeed, the Self-
Tuning Control STC is an area which has attracted, and continues to attract, 
extensive interest from academia and the literature is littered with references to 
leading figures  such as: Åström (1983), Clarke and Gawthrop (1979), Grimble 
(1982) and Love (2007). The motivation for the work outlined here has been to 
study weighted minimum-variance self-tuning regulation of stochastic time-varying 
systems. Such regulation is applied for the control of a heat transfer process. 

In this paper, we consider the weighted minimum-variance control strategy. Various 
types of self-tuning regulators are developed, while being based on the weighted 
minimum-variance regulation strategy. The stability conditions and the techniques 
of the practical implementation of these regulators are given. The validation of the 
developed analytical results carried out on a heat transfer process. 

The structure of the explicit self-tuning regulator is shown in Figure 1: 
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Figure 1. Structure of the explicit self-tuning regulator. 

The structure, Figure 1., is essentially composed of three parts: a parameter 
estimator, linear regulator and a bloc which determines the regulator parameters 
from the estimated parameters. 

2.  Input-output ARMAX mathematical model 

The description of the dynamic systems with time-varying parameters by input-
output mathematical models became increasingly used in the last few years in the 
development of the diagrams of parametric estimate or adaptive control, and this, 
because of the simplicity of their practical implementation. Thus, one proposes here 
to use an input-output mathematical model of the type ARMAX (Auto-Regressive 
Moving Average with eXogenous) allowing the description of the dynamic systems 
time-varying parameters, which operate in a stochastic environment. 

Let us consider a stochastic system with time-varying parameters, which can be 
described by the following input-output ARMAX mathematical model: 

)()()(),()(),( 111 keqCkukqBqkykqA d −−−− +=  (1) 

where )(ku  and )(ky  represent the input and the output of the system at the 
discrete-time k  respectively, ( )e k designs the noise (a set of different kinds of 
disturbances) which affects the system, d  is the delay of the system, and ),( 1 kqA − , 

),( 1 kqB −  are polynomials with unknown time-varying parameters, such as: 

 

A
A

n
n qkaqkakqA −−− +++= )()(1),( 1

1
1

�  (2) 

B
B

n
n qkbqkbkqB −−− ++= )()(),( 1

1
1

�  (3) 

and )( 1−qC  is a polynomial with constant but unknown parameters, which is 
defined by: 

C
C

n
n qcqcqC −−− +++= �

1
1

1 1)(  (4) 

An , Bn  and Cn  being orders of the polynomials ),( 1 kqA − , ),( 1 kqB −  and 
)( 1−qC , respectively. 

Without loss of general information, but for reasons of simplicity, one supposes that 
the various polynomials ),( 1 kqA − , ),( 1 kqB −  and )( 1−qC  have the same order n  
(i.e.: nnnn CBA === ). In the following study, the delay d  and the order n  of the 
selected mathematical model are supposed to be known. 
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The development of an ARMAX mathematical model, as described by (1), can be 
carried out while being based on the knowledge of measurements of the input )(ku  
and the output )(ky , which result from the considered system. In such a situation, 
and for a number M  of measurements, one must have two sequences of 
measurements, namely: 

a. the sequence of the input )(kuI , such as: },,1);({)( MkkuI ku �== ; 

b. the sequence of the output )(kyI , such as: },,1);({)( MkkyI ky �== . 

It is supposed here that )}({ ke  is a sequence of independent random variables, of 
zero mean and variance 2σ . Moreover, one supposes that this sequence of noise is 
independent of the sequences of the input )(kuI  and the output )(kyI . These two 
assumptions are often allowed in the majority of the industrial applications, since 
they can well represent the reality of the characteristics of the random disturbances 
which act on the system. Moreover, they can give appropriate solutions to the 
identification or control problems, and consequently, to simplify the practical 
implementation concerning the elaboration of the schemes of estimate or control. 

3.  Recursive algorithm of parametric estimate of wide least squares 

One proposes to work out a recursive algorithm which considers the parameters of 
stochastic systems to time-varying parameters. These systems can be described by 
an ARMAX input-output mathematical model, as given by (1). The problem 
formulation of parametric estimate will be carried out starting from the use of the 
recursive method of extended least squares, by including a  forgetting factor of 
exponential while being based on the knowledge of several measurements (couples 
of input-output) resulting from the considered system. 

The output )(ky  of the ARMAX mathematical model (1) can be expressed as 
follows:  

)()1()()()(            

)1()()()()1()()(

1

11

nkeckeckendkukb

dkukbnkykakykaky

nn

n

−++−++−−+
+−−+−−−−−=

�

��

 (5) 

or in an equivalent way, in a compact form: 

)()()()( kekkky T +ψθ=  (6) 

in which the vectors of parameters )(kθ  and observations )(kψ  are, respectively,  
defined by: 

])()()()([)( 111 nnn
T cckbkbkakak ���=θ  (7) 

and 
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)]()1()()1()()1([)( nkekendkudkunkykykT −−−−−−−−−−−=ψ ���  (8) 

The method of parametric estimate by wide least squares is an extension of that of 
ordinary least squares, where the vectors of parameters and observations are large. 
In this direction, the vector of parameters )(kθ , defined by (7), contains the 
parameters )(kai  and )(kb j , nji ,,1, �= , of the system dynamics, and the 
parameters ic , ni ,,1�= , which correspond to the )(ke  noise dynamics. Let us 
add that the vector of observations )(kψ , as given by (8), consists in one hand of 
measurable sequences, which are related to the measured sizes of the output and the 
input of the system, and in other hand of a non-measurable sequence, which is 
related to the noise acting on this system. It is quite obvious that, the introduction of 
this observations vector )(kψ  into the experiment implementation of identification 
method using ordinary least squares algorithm, leads to a failure. To solve this 
problem, one can replace the noise sequence elements { ( ); 1, , }e k i i n− = �  by 
their a priori estimated values { ( ); 1, , }k i i nε − = � . While taking into account 
this solution, it will be possible to have an approximation )(kψ

�

 of the observations 
vector )(kψ , such as: 

)]()1()()1()()1([)( nkkndkudkunkykykT −ε−ε−−−−−−−−−=ψ ���

�

 (9) 

Thus, one can describe the predicted output of the system )(ˆ ky  by the following 
expression: 

)()1(ˆ)(ˆ kkky T ψ−θ=
�

 (10) 

where )1(ˆ −θ k  is the parameters vector, estimated at the discrete sample 1−k , such 
as: 

)]1(ˆ)1(ˆ                      

)1(ˆ)1(ˆ)1(ˆ)1(ˆ[)1(ˆ

1

11

−−

−−−−−−=−θ

kckc

dkbdkbkakak

n

nn
T

�

��

 (11) 

One defines the a priori prediction error )(kε , which corresponds to the difference 
between the output )(ky  of the system and that predicted )(ˆ ky  of the tuning model, 
by the following expression: 

)()1(ˆ)()( kkkyk T ψ−θ−=ε
�

 (12) 

The problem arising here consists of the estimate parameters intervening in the 
vector )(kθ , defined by (7). The study of this problem must allow the variance 
minimization of a certain bearing criterion on the differences between the output of 
the system )(ky  and that predicted by the tuning model )(ˆ ky . 
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It is well-known that the parametric estimation algorithm of the Recursive Extended 
Least Squares RELS, which can be applied to a stochastic system with unknown 
parameters, where θ=θ )(k  is a constant k∀ , can be described by: 

)()1(ˆ)()(

)()1()(1

)1()()()1(
)1()(

)()()()1(ˆ)(ˆ

kkkyk

kkPk

kPkkkP
kPkP

kkkPkk

T

T

T

ψ−θ−=ε

ψ−ψ+
−ψψ−−−=

εψ+−θ=θ

�

��

��

�

 (13) 

It must be emphasized that the use of the recursive algorithm of parametric estimate 
RELS, as given by (13), in order to consider the time-varying parameters in the 
vector )(kθ , described by (7), leads to a failure (bad quality of estimate, etc). To 
overcome this difficulty, one can choose various procedures allowing the parameters 
calculation of the adaptation gain matrix )(kP , which is involved in this algorithm, 
in such way that the tracking of parametric variations is achievable and can be 
ensured in the course of time (Kamoun, 2003). Among these procedures, the one 
that includes a forgetting factor of an exponential kind is considered. The procedure, 
which consists in introducing a forgetting factor into the adaptation gain matrix of a 
recursive parametric estimation algorithm, allows improving its capacity to the 
benefit of adaptation, while ensuring best tracking of the time-varying parameters of 
the system considered. This procedure is largely discussed and analyzed in several 
publications (see, e.g., Ljung and Gunnarsson, 1990; Kamoun, 2003). In such a 
procedure, the forgetting factor prevents that the parameters of this matrix to the 
benefit of adaptation do not become too small so that all new data (measured values 
of the input and the output), in the observation vector, affect the quality 
performances of identification. The forgetting factor thus allows to introduce an 
exponential factor which influences the old values measured to the benefit of the 
new measured values; this permits thus to balance the old observations less and less. 

One can show easily that the estimate of the parameters intervening in the vector 
)(kθ , defined by (7), can be achieved  by using the following recursive algorithm of 

parametric estimate RELS, by including a forgetting factor of an exponential kind: 

)()1(ˆ)()(

]
)()1()()(

)1()()()1(
)1([

)(
1

)(

)()()()1(ˆ)(ˆ

kkkyk

kkPkk

kPkkkP
kP

k
kP

kkkPkk

T

T

T

ψ−θ−=ε

ψ−ψ+λ
−ψψ−−−

λ
=

εψ+−θ=θ

�

��

��

�

 (14) 

where )(kλ  is a forgetting factor, which can be calculated starting from the  
recurrent equation, as follow: 
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)1()1()(
�

�

�
λ−λ+−λλ=λ kk  (15) 

with: 10 <λ<
�

, 10 <λ< � . 

One can go up to: 

∞→
λ=λ

k
k �)(  lim  (16) 

Let us emphasize that the range of variation of forgetting factor )(kλ  must satisfy 
the following condition: 1)(0 <λ< k . Let us add that the purpose of the choice of 
this time-varying forgetting factor )(kλ  is to more refine the estimation quality of 
the time-varying parameters. However, in certain types of industrial applications, 
one can choose a constant forgetting factor (i.e.: λ=λ )(k , k∀ ). 

4.  Weighted minimum-variance self-tuning regulation 

The object of this section is the study of certain problems relating to the self-tuning 
regulation of stochastic time-varying systems. We will more particularly putting the 
focus on the class of the systems to time-varying parameters, which can be described 
by mathematical models input-output of the ARMAX type, with unknown and time-
varying parameters.   

The use of the structure of self-tuning regulation of the systems, while being based 
on various approaches (pole placement, PID, with variance of minimal output, etc), 
became increasingly widespread in the industrial applications. We will be interested 
here in the synthesis of a weighted minimum-variance self-tuning regulator. This 
type of regulator allows limiting the control signal magnitude to a certain desired 
value. The development of the weighted minimum-variance self-tuning regulator 
can be made starting from the minimization of a behaviour criterion on the variance 
of the output and the input of the system to be controlled, such as definite by the 
mathematical model input-output ARMAX (1). Two schemes of self-tuning 
regulation are used, namely: the explicit scheme and the implicit one. 

The output )(ky  of the stochastic system, described by the ARMAX mathematical 
model input-output (1), can be written at the discrete sample 1++ dk : 

)1(
),(

)(
)(

),(

),(
)1(

1

1

1

1
+++=++ −

−

−

−
dke

kqA

qC
ku

kqA

kqqB
dky  (17) 

or in an equivalent way: 

)1(),()(
),(

),(
)(

),(

),(
)1( 1

1

1

1

1
++++=++ −

−

−

−

−
dkekqFke

kqA

kqG
ku

kqA

kqqB
dky  (18) 



On the self-tuning regulation of stochastic systems −�/ ��0 � �   � '��������� � � �  

 

 

where the polynomials ),( 1 kqF −  and ),( 1 kqG −  , are solution of the following 
polynomial equation: 

),(),(),()( 11111 kqGqkqFkqAqC d −−−−−− +=  (19) 

They are given by: 

d
d qkfqkfkqF −−− +++= )()(1),( 1

1
1

�  (20) 

and 

1
1

1
10

1 )()()(),( +−
−

−− +++= n
n qkgqkgkgkqG �  (21) 

The problem of the self-tuning regulation of the stochastic system considered, which 
is described by mathematical model ARMAX (1), consists on determining a control 
law )(ku  to reduce ″ as well as possible ″ the effect of the noise )(ke  on the output 
of the system )(ky . The study of this problem of regulation can be carried out 
starting from the minimization of a quadratic criterion )1( ++ dkJ on the variance 
of the output )1( ++ dky  and a weighting α  on the variance of the control law 

)(ku , such as: 

)]()1([)1( 22 kudkydkJ α+++=++ �  (22) 

where �  indicates the expectation and α  is a weighting, which must be selected in 
a suitable way ( 0>α ). 

The output )1( ++ dky  of the dynamic system considered, as defined by (17), can 
be rewritten as follows: 

)1(),(                      

)(
),(

),(
)1(

),(

),(
)()()1(

1

1

1

1

1

1

+++

+−+=++

−

−

−

−

−

dkekqF

ke
kqA

kqG
ku

kqA

kqL
kukbdky

 (23) 

where the polynomial ),( 1 kqL −  is defined by: 

1
1

2
11

1
123112

1

)()())()()((                 

))()()(()()()(),(
+−+−

−

−−

−−+

+−+−=
n

n
n

nn qkbkaqkbkakb

qkbkakbkbkakbkqL �

 (24) 

By using the two following notations: 

)(
),(

),(
)1(

),(

),(
)(

1

1

1

1
ke

kqA

kqG
ku

kqA

kqL
kT −

−

−

−
+−=  (25) 

and 

)()()()( 1 kukbkTkT +=°  (26) 
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we can rewrite the quadratic criterion (22), as follows: 

��

�
��

� α++++=++ −
° )()]1(),()([)1( 221 kudkekqFkTdkJ �  (27) 

Let know that the sizes intervening in )(kT°  are measurable at the discrete sample 
1++ dk  and that the sequence )}1({ ++ dke  is not correlated with )(kT° , we can 

put the quadratic criterion (27) in the following form: 

222
1

22 )]()(1[)()()1( σ++++α+=++ ° kfkfkukTdkJ d�  (28) 

The control law )(ku  allows minimizing this quadratic criterion (28), and can be 
obtained by solving the following expression: 

0)()()(
)(

)1(
1 =α+=

∂
++∂

° kukTkb
ku
dkJ

 (29) 

It results that the expression of the control law )(ku  can be given by: 

)(
),(

),(
)(

1

1
ky

kqZ

kqG
ku −

−
−=  (30) 

where the polynomial ),( 1 kqZ −  is given by: 

11
21

1
1

111

)()()(            

)())(/(),(),(),(
+−−

+
−

−−−−

+++=

α+=
dn

dn qkzqkzkz

qCkbkqFkqqBkqZ

�

 (31) 

with: ))(/()()( 111 kbkbkz α+= . 

The stability of the control law )(ku  described by (30), is related to the roots of the 
polynomial ),( 1 kqZ − . Of course, a suitable choice of the α  weighting allows 
applying this control law for a stochastic minimum phase system. 

4.1.  Weighted minimum-variance explicit self-tuning regulator  

The weighted minimum-variance explicit self-tuning regulator can be held by 
considering the three following stages:  

Stage 1: estimate the parameters intervening in mathematical model ARMAX (5), 
by using the recursive algorithm of parametric estimate RELS (14); 

Stage 2: determine the parameters intervening in the polynomials ),( 1 kqF −  and 
),( 1 kqG − , by solving the polynomial equation (19); 

Stage 3: calculate the control law )(ku  from the following equation: 
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1
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1
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n
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��
−

=

+

=  (32) 

We notice that during the calculation of the control law )(ku , defined by (32), we 
can have, at a given 0k  sample: 0)( 01 =kz . In such a situation, the boundedness of 
the control signal )( 0ku  is not ensured, which can cause instability of the system. 
To overcome this problem, we can test the value of the parameter )(1 kz ; so: if 

0)( 01 =kz , then we take ξ=)( 01 kz , with ξ  a rather weak parameter which  must 
be chosen in an adequate way. 

4.2. Weighted minimum-variance implicit self-tuning regulator  

We can show that the minimization of a quadratic criterion )1( ++ dkJ  of the type 
(22) compared to the control law )(ku  is equivalent to the minimization of the 
following quadratic criterion: 

)]1([)1( 2 ++=++ dksdkJ �  (33) 

where )1( ++ dks  is the output of an implicit model, such as:  

)())(/()1()1( 1 kukbdkydks α+++=++  (34) 

We can express this output )1( ++ dks  as follows: 

)1(                      

)1()](1[)(),()(),()1( 111

++υ+
++−++=++ ∗−−−

dk

dksqCkykqGkukqZdks  (35) 

in which )1( ++∗ dks  is the prediction with 1+d  step of the implicit model output 
)(ks . 

The output )1( ++ dks  can be given in the following compact form: 

)1()1()()1( ++υ+++ψθ=++ dkdkkdks T  (36) 

where the vectors of parameters )(kθ  and observations )1( ++ψ dk  are defined by: 

])()()()([)( 1101 nndn
T cckgkgkzkzk ��� −+=θ   (37) 

and 

)]1()(                            

)1()()1()([)1(

ndksdks

nkykyndkukudkT

−++−−+−

+−+−−=++ψ
∗∗

�

��

 (38) 
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In the vector of observations )1( ++ψ dk  the sequence of the prediction with 1+d  
step of the output )(ks  is not observable. Thus, we can choose an approximation 

)1( ++ψ dk
�

 of the vector of observations )1( ++ψ dk , such as: 

)]1(ˆ)(ˆ                            

)1()()1()([)1(

ndksdks

nkykyndkukudkT

−++−−+−

+−+−−=++ψ
∗∗

�

��

�

 (39) 

We can define the optimal self-tuning predictor )1(ˆ ++∗ dks  in 1+d  step of the 
output )(ks  by the following expression: 

)1()(ˆ)1(ˆ ++ψθ=++∗ dkkdks T �

 (40) 

The weighted minimum-variance implicit self-tuning regulator can be held by 
considering the two following stages:  

Stage 1: estimate the parameters intervening in the implicit mathematical model 
(36), by using the recursive algorithm of parametric estimate RELS (14); 

Stage 2: calculate the control law )(ku , which allows cancelling the optimal self-
tuning predictor )1(ˆ* ++ dks , as follows: 
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 (41) 

Let us notice that during the calculation of the control law )(ku , defined by (41), we 
can have, at a given 0k  sample: 0)(ˆ 01 =kz . In this case, the boundedness of the 
control signal )( 0ku  is not ensured, which can cause instability of the system. To 
overcome this problem, we can test the value of the estimated parameter )(ˆ1 kz ; so: 
if 0)(ˆ 01 =kz , then we take ξ=)(ˆ 01 kz , with ξ  a rather weak parameter which must 
be chosen in an adequate way. 

4.3. Simplified weighted minimum-variance implicit 
self-tuning regulator 

The control law )(ku , defined by (41), is elaborate to cancel the self-tuning optimal 
predictor )1(ˆ ++∗ dks . This enables us to choose a simplified version of the implicit 
model (4.47), and this, by neglecting the sequence },,1);1({ nhhdks �=+−+∗ . 
The simplified implicit model which results is given by: 

)1()1()()1( ++υ+++ψθ=++ dkdkkdks T  (42) 
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where the vectors of parameters )(kθ  and observations )1( ++ψ dk  are defined by: 

)]()()()([)( 101 kgkgkzkzk ndn
T

−+=θ ��   (43) 

)]1()()1()([)1( +−+−−=++ψ nkykyndkukudkT
��  (44) 

The various sizes intervening in this vector of observations )1( ++ψ dk  are 
measurable at the discrete sample 1++ dk . It thus results that the estimate of the 
vector of parameters )(kθ , as defined by (4.54), can be achieved by a recursive 
algorithm of parametric estimate based on the techniques of least squares (e.g., the 
recursive ordinary least squares (RLS) parametric estimation algorithm with a 
forgetting factor). 

The simplified weighted minimum-variance implicit self-tuning regulator can be 
held by considering the two following stages:  

Stage 1: estimate the parameters intervening in the simplified implicit mathematical 
model (42), by using a recursive ordinary least squares (RLS) parametric 
estimation algorithm with a forgetting factor (see, e.g, Kamoun, 2003); 

Stage 2: calculate the control law )(ku  starting from the following expression: 

0)1()(ˆ =++ψθ dkkT  (45) 

we deduce: 
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We must exclude the situation which gives 0)(ˆ 01 =kz at a given 0k  sample, to 
guarantee the boundedness of the control signal )( 0ku . 

5.  Application to a heat transfer process 

We will test here the effectiveness of the developed weighted minimum-variance 
explicit self-tuning regulator, by the experiments on a heat transfer process. The 
problem arising thus consists of the regulation of this process, while supposing that 
it operates in a stochastic environment. Before modelling the considered process, we 
will present it, briefly, with its environment in the following section. 

5.1. Description of the process 

The Heat Transfer Process is represented by a tube of conical form, controlled by a 
variable heating power amplifier from 0 to 3 kw, Figure 2.a. The picture of the 
process is shown in Figure 2.b. 
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Figure 2.a Experimental setup of the heat transfer process 

 

 

 

 

 

 

 

Figure 2.b Picture of the process 

The air conditioning is puffed up at the other end of the tube by using a Fan rotating 
at a constant speed. The air is heated in contact with all the heating resistances. They 
are associated in one phase load connected to the power amplifier circuit containing 
a triac, controlled by an electronic circuit around the integrated circuit "TCA 785", 
which is governed between 0 and 10 V. The voltage variation acts in order to control 
the angle of beginning of the triac and consequently to change the power of the 
heating resistances, it forms the Actuator, Figure 3. 

 

 

 

 

 

 

Figure 3. The actuator synoptic 
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On the other side of the heat transfer process, the temperature sensor, type LM 335, 
permitted the temperature measurement of the air blown at the end of the tube. The 
measures acquirement of the process is done through an unit of treatment and 
computation that is constituted of a computer incorporating an acquirement card of 
APCI-ADADIO type including the blocks of numerical analogical conversion 
(sensor-calculator) and the analogical numerical conversion (calculator-actuator or 
its control circuit). The card of acquirement is constituted of:  

• a digital analogical converter for the analogical inputs: 8 differential inputs or 16 
simple, all multiplexed;   

• two independent analogical digital converters for two analogical outputs;   
• 16 numeric inputs/outputs;   

• three channels of counter/timer. 

5.2. Experiment results 

The description of the heat transfer process considered can be made by a 
mathematical model input-output of the type ARMAX, such as: 

1 1 1( ) ( ) ( 1) ( ) ( 2) ( ) ( 1)y k a k y k b k u k e k c e k= − − + − + + −  (47) 

where )(ku  is the voltage applied to the heat process at the discrete sample k , )(ky  
represents the value of the measured temperature of the sensor, )(ke  indicates the 
noise affecting the process, )(1 ka  is an unknown time-varying parameter, and 1b  
and 1c  are unknown parameters, but presumed constant. We suppose that the 
sequence },,1);({ Mkke �=  consists of random variables independent of zero mean 
and variance 2σ . 

From the ARMAX mathematical model (4.48), we can rewrite the output )(ky  in 
the following matrix form: 

)()()()( kekkky T +ψθ=   (48) 

in which the vectors of parameters )(kθ  and observations )(kψ  are defined by: 

[ ]1 1 1( ) ( ) ( )T k a k b k cθ =   (49) 

( ) [ ( 1) ( 2) ( 1)]T k y k u k e kψ = − − − −  (50) 

The problem here is related to the self-tuning regulation of the considered process 
temperature, in the sense of generalized minimum variance of the temperature, 
which corresponds to a reference temperature: ( ) 38ry k C= ° . For this, we propose 
to use a self-tuning regulator explicit to minimum generalized output variance. Data 
related to the experimental implementation of this self-tuning regulator are: 
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• the identification of the parameters involved in the vector )(kθ , given by (49), is 
done while using the recursive identification algorithm RELS (14). The initial 
conditions of this identification algorithm are selected as: ˆ(0) 0θ =  and 

(0) 1000P I= , where I is the identity matrix. The forgetting factor involved in 
the recursive identification algorithm is chosen as: ( ) 0.99,k kλ = ∀ ; 

• the α  weighted coefficient  is chosen as : 0.5α = ; 

• the control horizon is taken in the following range: 0,1, , 150k = � . 

The curves of the output ( )y k  and the reference signal ( )ry k , the variance 2 ( )y kσ  
of the output ( )y k , the control law ( )u k  and the variance  of the control law ( )u k  
are shown in Figure 4. 
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Figure 4. Curves of the output ( )y k  and ( )ry k , the variance 2 ( )y kσ  of  
the output ( )y k , the control law ( )u k  and its variance 2 ( )u kσ .  

 
In Figure 5., we represent the evolution curves of the error ( ) ( ) ( )rh k y k y k= −  and 
its variance 2 ( )h kσ .  
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Figure 5. Curves of the error ( )h k  and its variance 2 ( )h kσ .  
 

The evolution curves of the estimated parameters 1̂( )a k , 1̂( )b k , 1̂( )c k and the 
prediction error ( )kε are illustrated in Figure 6.   
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Figure 6. Evolution curves of the estimated parameters )(ˆ1 ka , 1̂( )b k , 1̂( )c k  

 and the prediction error ( )kε . 
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According to experimental results, we note that the following numerical values for 
the parameters 1( )a k  and 1( )b k  involved in the mathematical models (47) can be 
smoothed linearly as follows:  

for 1, ,11k = � , 1( ) 0.9590a k = − ,  

for 12, ,50k = � , 4
1( ) 4.974.10 ( 11) 0.959a k k−= − − , 

for 51, ,125k = � , 4
1( ) 1.08.10 ( 125) 0.9396a k k−= − − , 

for 126, ,150k = � , 1( ) 0.9313a k = − . 

for 1, ,18k = � , 1( ) 0.4811b k = ,  

for 19, ,50k = � , 3
1( ) 3.603.10 ( 18) 0.4811b k k−= − + , 

for 51, ,125k = � , 3
1( ) 4.048.10 ( 125) 0.5964b k k−= − + , 

for 126, ,150k = � , 1( ) 0.6904b k = . 

Let us add that the noise sequence ( )e k  corresponds to the Gaussian distribution, 

with zero mean and variance 2 0.0288σ = . 

The interpretation of the evolution curves of the different signals (input and output) 
and their variances as well as the model parameters which are represented in Figs. 4, 
5 and 6 shows well the good quality of the regulation of the heat transfer process, 
which is obtained by the weighted minimum variance self-tuning regulation of 
stochastic time-varying systems. Thus, the evolution curves of the variances 2 ( )u kσ  
and  2 ( )y kσ  converge towards a constant minimum values. 

Table 1 presents the values of the statistical averages: 
1̂cm  of the estimated 

parameters, mε  of the prediction error and 2m
εσ of its variance, hm  of the error and 

2
h

mσ of  its variance.  

Table 1 Statistical averages: 
1̂cm , mε , 2m

εσ , hm  and 2
h

mσ  

1̂cm  mε  2m
εσ  hm  2

h
mσ  

-0.1541 0.0240 0.0288 0.0317 0.0226 

Table 2 gives the values of the statistical averages: um  of the control law ( )u k  and 

2
u

mσ of its variance, ym  of the output  ( )y k  and 2
y

mσ of its variance, and the values 

of the statistical averages: 
1fm , 

0gm , 
1zm and 

2zm of the estimated parameters. The 

computation of the values is taken in the following range: k=111, …, 150. 
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Table 2 Statistical averages: um , 2
u

mσ , ym , 2
y

mσ , 
1fm , 

0gm , 
1zm  and 

2zm  

um  2
u

mσ  ym  2
y

mσ  
1fm  

0gm  
1zm  

2zm  

3.7501 0.0056 37.9683 0.0226 0.7774 0.7242 1.4148 0.4224 

 
According to experimental results not presented, we note that the level of the control 
law ( )u k  and the output signal ( )y k  is related to the value of the α  weighting. 
Indeed, if α  increases, the control law signal ( )u k  decreases and that of 

( )y k increases. 
From the experiment results, we can notice that the control performance quality 
obtained by this type of self-tuning controller is satisfactory. 

6.  Conclusion 

This paper was reserved to the study of problems relating to the self-tuning 
regulation of the dynamic systems operating in a stochastic environment. We 
considered more particularly the dynamic systems with time-varying parameters, 
which can be described by the class of the input-output mathematical models, linear, 
stochastic, monovariable, to known structure (order, delay), and to unknown  
parameters and time-varying.   

Three types of self-tuning regulators are developed, while based on the strategy of 
weighted minimum-variance regulation. They are usually known, respectively, as: 
the weighted minimum-variance explicit self-tuning regulator, the weighted 
minimum-variance implicit self-tuning regulator and the simplified weighted 
minimum-variance implicit self-tuning regulator. The convergence, the stability 
conditions as well as the practice method of implementation of these regulators were 
given. 

The evolution curves, carried out from the experiment tests on a heat transfer 
process, have shown well the good quality of the regulation performances of the 
weighted minimum-variance explicit self-tuning regulator. The experimental results 
showed also that  1( )a k  and 1( )b k  are parameters slowly time-varying. However, 
we can conclude that the experimental results obtained are satisfactory. 
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