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Abstract. This paper presents a new method based on the multimodel
approach for rejection of harmonic disturbances with time varying fre-
quency and phase drift. This method combines a supervision procedure
and a Magnitude Phase Locked Loop scheme, to design a local partial
state model reference controllers that achieve an asymptotic disturbance
rejection. These local controllers are synthesized for a given frequency,
using the internal model principle. The effectiveness of this proposed
multiple disturbances rejection is shown through a simulation examples.
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1 Introduction

Considerable attention has been drawn to the problem of the rejection of har-
monic disturbances with unknown and possibly time varying frequency in many
engineering applications, namely process control, vibration monitoring and fault
detection. Indeed the estimation and reconstruction of unknown disturbances are
crucial and more particularly when their underlying dynamics are time varying
as it has been pointed out in several contributions, namely ([4], [3], [8]). The
available potential solutions are based on the knowledge of a suitable model of
the disturbances. When the disturbances model is known, an asymptotic distur-
bance rejection can be performed using the internal model principle as in the
indirect method proposed in ([2], [1]). Recall that the internal model principle
consists in simply incorporating the poles of the disturbances model into the reg-
ulator pole configuration ([12]). When the disturbances model is not completely
known or involves time varying dynamics, many approaches are developed to
achieve asymptotic disturbances rejection ([13]) and further developed in ([10],
[11], [7], [14]).
Recently, the multimodel approach is proposed and developed for rejection of
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multiple harmonic disturbances ([6]). This approach allows to incorporate a suit-
able adaptation alertness into the control design to deal with the frequency vari-
ations of the harmonic disturbance under consideration. It particularly, consists
in designing a controller with a robust disturbances rejection capability for each
single frequency composing the harmonic disturbances. Indeed, a set of partial
state model reference controllers, which are designed according to the internal
model principle with an adequate Q-parametrization, are appropriately com-
bined to yield a robust global controller ensuring an asymptotic disturbances
rejection.

In this work, we present a further multimodel development which not only over-
comes the problem of time varying frequency ([5], [4], [11]), but also considers
the problem of the disturbance phase drift. Seeing that, theses disturbance pa-
rameters variations can distort the performance criteria adopted in the multi-
model approach. The motivation of this paper is twofold. Firstly the problem
of disturbance with, simultaneously, time varying frequency and magnitude is
investigated. Secondly, the proposed multimodel approach is based on modified
performance criterion. This criterion depends on the harmonic disturbance esti-
mated period generated from a Magnitude Phase Locked Loop scheme. Indeed,
a set of local partial state model reference controllers are built using the internal
model principle. The stabilizer controller is properly designed, for a given period,
by a suitable supervision procedure.

This paper is organized as follows. Section 2 describes the multimodel proposed
approach for multiple disturbance rejection using the internal model principle.
Section 3 is devoted to the modified multimodel approach which combines a
Magnitude Phase Locked Loop algorithm with a new supervision procedure to
perform an admissible multiple harmonic disturbances rejection. Finally, the per-
formances of the proposed method are illustrated through simulation example.
A concluding remarks end the paper.

2 The multimodel approach for disturbance rejection

We consider the following system:

y(k) = q−d−1 B(q−1)

A(q−1)
u(k) +

1

A(q−1)
p(k) (1)

where:

p(k) = H(q−1)δ(k)

u(k) and y(k) are respectively the input and the output of the system. p(k)
is the periodic disturbance and δ(k) is the unit Dirac impulse.
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The disturbance transfer function H(q−1) can be written as:

H(q−1) =
C(q−1)

D(q−1)

The problem of disturbance rejection is studied through the following assump-
tions ([10]):

1. The polynomials A(q−1), D(q−1), B(q−1) et C(q−1) have the following

forme:

X(q−1) = x0 + x1q
−1 + ... + xnxq−nx

where A(q−1) et D(q−1) are monic.

2. The transfer function : q−d−1 B(q−1)
A(q−1) is known or obtained by system

identification.

3. The transfer function H(q−1) is Lyapunov stable. The roots of D(q−1)
are located on the unit circle.

4. The polynomials B(q−1) and D(q−1) are coprime.

The controller to be designed is a RS-type polynomial.
Refferring to this control structure we can write:

S0(q
−1)u(k) + R0(q

−1)y(k) = Pc0(q
−1)βy∗(k + d + 1) (2)

β =
1

nB
∑

i=0

bi

nB is the degree of the polynomial B(q−1).

S0(q
−1) and R0(q

−1) are polynomials characterizing the controller. Let Pc0(q
−1)

the polynomial defining the desired dynamics in closed loop:

Pc0(q
−1) = A(q−1)S0(q

−1) + q−d−1B(q−1)R0(q
−1) (3)

Where: S0(q
−1) and R0(q

−1) are the particular solutions of the diophantien
equation given by (3).
The system given by the equation (1) can be described by the behavior of its
input-output tracking errors eu(k) and ey(k) given as follow:

eu(k) = u(k) − A(q−1)βy∗(k + d + 1) = −
R0(q

−1)

Pc0(q−1)
p(k) (4)

ey(k) = y(k) − B(q−1)βy∗(k) =
S0(q

−1)

Pc0(q−1)
p(k) (5)
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Using the ”Youla-Kucera” parametrization ([10], [11], [7]), the structure of
the stabilizing controller has the form :

S(q−1) = S0(q
−1) − q−d−1Q(q−1)B(q−1) (6)

R(q−1) = R0(q
−1) + Q(q−1)A(q−1) (7)

with Q(q−1) is the ”Youla-Kucera” parameter written as:

Q(q−1) = q0 + q1q
−1 + ... + qnQ

q−nQ

The controller given by (6) and (7) achieves asymptotic disturbance rejection
provided that the polynomial S(q−1) has the form:

S(q−1) = M(q−1)D(q−1)

Using this last expression the equation(6) can be written as:

S0(q
−1) = M(q−1)D(q−1) + q−d−1B(q−1)Q(q−1) (8)

To determine Q(q−1) in order that the controller incorporates the internal model
of the disturbance we need to solve the diophantien equation (8). Where M(q−1)
and Q(q−1) correspond to the solution of the diophantien equation (8). Indeed,
if a solution for the equation (8) exists, the stabilizing controller given by the
equations (6) and (7) satisfies the following condition:

lim
k→∞

ey(k) = 0.

Equation (8) has a unique solution for M(q−1) and Q(q−1) with a degree nM

and nQ given as follow:

nM = nB + d et nQ = nD − 1

where nD is the degree of the polynomial D(q−1).
The structure of the parametrization of the stabilizing controller is given on
figure 1.

Indeed the disturbance p(k) with multiple parameters: multiple frequencies
(periods) and magnitudes entering the loop is decomposed into a disturbance
pi(k) with single and corresponding period Ti(k) and magnitude Api(k). For each
disturbance pi(k), an asymptotic local controller capable to perform asymptotic
disturbance rejection is calculated.
Each local controller is computed using the internal model principle as follow:

Si(q
−1) = S0(q

−1) − q−d−1Qi(q
−1)B(q−1)

Ri(q
−1) = R0(q

−1) + Qi(q
−1)A(q−1)

(9)

where the polynomial Qi(q
−1) is computed, for a given period Ti(k) by solving

the following diophantien equation:

S0(q
−1) = M(q−1)Di(q

−1) + q−d−1B(q−1)Q(q−1) (10)
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Fig. 1. Structure of the stabilizing controller parametrization.

The local partial model reference controller is given by the following equation:

Si(q
−1)ui(k) + Ri(q

−1)y(k) = Pc0(q
−1)βy∗(k + d + 1)

For each elementary period Ti(k), there is one controller (Si(q
−1), Ri(q

−1))
that satisfies the control objective is selected according to a supervision proce-
dure. This last uses a switching rule based on the minimizing of the following
performance criterion:

Ji(k) = αε2
i (k) + β

k
∑

j=1

e−λ(k−j)ε2
i (k) i = 1..N (11)

with α, β and λ are positive tuning parameters.λ is a forgetting factor which
also assures the boundedness of the criterion.
If we choose a large value for these parameters, we will obtain a very quick
response to the abrupt parameter changing but a bad response with respect to
disturbances. It means that, an output disturbance will generate an unwanted
switching to another controller which result in a poor control. Contrary, a small
value will reduce the number of unwanted switching but lead to a slow response
with respect to the parameter variation ([9]).

In the proposed multimodel strategy ([6]), the error εi(k) criterion depends
on the disturbance p(k) and the local disturbances for a given period Ti as
following:

εi(k) = p(k) − pi(k)

This method was shown to provide an asymptotic disturbance rejection in
presence of time varying disturbance frequency. Otherwise, to study the effec-
tiveness of this approach where not only the frequency of the disturbance is
variable but also its magnitude and phase, a simulation example is carried out.
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2.1 Simulation results

The disturbance rejection of unknown and simultaneously, time varying param-
eters; phase, magnitude and frequency using the multimodel approach based on
the internal model principle, as synthesized in the previous section is illustrated
in the case of discrete second order system described by the following equation:

y(k) = 0.74yp(k − 1) + 0.35y(k − 2)+

0.95u(k − 1) + 0.75u(k − 2) + p(k)
(12)

The following closed loop characteristic polynomial Pc0(q
−1) is considered:

Pc0(q
−1) = 1 + 1.339q−1 + 1.0635q−2 + 0.4987q−3 + 0.1298q−4

The considered disturbance p(k) applied on the output of the system have
the form given by the following equation:

p(k) =























0.6sin( 2Π
60 k) ; k < 1000

0.8sin( 2Π
40 k + 2Π

3 ) ; 1000 ≤ k < 2000

0.5sin( 2Π
80 k) ; k ≥ 2000

(13)

The disturbance periods Ti(k) considered in this synthesis stage are :

Ti(k) = 60, 40, 80 , i = 1..3

It’s clear that the disturbance between the samples 1000 and 2000, has a period
T2(k) = 40 but it presents a phase drift equals to 2Π

3 .
The switching parameters are choosing as following:

α = 0.0001; β = 0.0001; λ = 0.09

Figure 2 gives the evolution of the plant output. It can be seen, that the
proposed supervision procedure was unable to achieve asymptotic disturbance
rejection, namely when a phase drift or magnitude distortion in any elementary
disturbance pi(k). This was proved mainly by the switching evolution between
the partial controllers (figure 4), in the presence of a phase drift in any elemen-
tary disturbance, the supervision procedure failed to design the corresponding
controller that ensure a perfect disturbance rejection.

To improve the multimodel approach, it is therefore, appropriate to modify
the supervision procedure that considers, for the decision, the error between the
partial disturbances pi(k) and the real one.
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Fig. 2. Evolution of the plant output.
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Fig. 3. Evolution of the plant input.
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Fig. 4. Evolution of the controllers switching law.

3 Rejection of harmonic disturbance with time varying

parameters using a modified supervision procedure

The designed controller is performed using a frequency estimator based on Mag-
nitude Phase Locked Loop approach, to provide asymptotic disturbance rejection
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in presence of time varying disturbance frequency and magnitude. This MPLL
scheme is exploited by an appropriate multimodel based new suitable supervision
procedure to deduce simple and powerful local controllers that would perform
well in the presence of time varying disturbance parameters. The following sec-
tion emphasizes the MPLL principle.

3.1 The MPLL principle

The Magnitude Phase Locked Loop concept was proposed in ([4]). The magni-
tude and the phase of an incoming harmonic disturbance can, simultaneously,
estimated using this algorithm. The estimated disturbance period is deduced
directly from the estimated phase.
The algorithm principle can be summarized as follows :

The harmonic disturbance p(k) is given by the following equation:

p(k) = Ap(k)cos(φ(k)) (14)

where Ap(k) and φ(k) are respectively the magnitude and the phase of the
disturbance. The estimated disturbance is designed as following:

p̂(k) = Âp(k)cos(φ̂(k)) (15)

with Âp(k) and φ̂(k) are respectively the estimated magnitude and phase of the
disturbance.
The estimated frequency, can be built using the estimated phase as:

ŵ(k) = φ̂(k + 1) − φ̂(k) = (q − 1)φ̂(k) (16)

The estimated period of the harmonic disturbance is obtained by:

T̂ (k) =
2Π

ŵ(k)
(17)

The equation (16) can be written as:

ŵ(k)

φ̂(k)
= (q − 1) =

1 − q−1

q−1
(18)

This equation presents the transfer function of a closed loop system having as
input φ̂(k) and as output ŵ(k). This transfer function is modified to insure
system stability and a good performance:

ŵ(k)

φ̂(k)
=

1 − q−1

Kw(1 − Nwq−1)
(19)

with:

Nw = 1 −
1

Kw

Multiple harmonic disturbances rejection −����. / 0 1 2 � � ' ��������1239 



The suitable choice of the parameter Kw leads to:

|Nw| < 1

The estimation of the harmonic disturbance is achieved by the minimizing of the
following criteria:

J = E[(p(k) − p̂(k))2] = E[(ep(k))2] (20)

where ep(k) is the estimation error defined as:

ep(k) = p(k) − p̂(k) = Ap(k)cos(φ(k)) − Âp(k)cos(φ̂(k)) (21)

The estimated disturbance magnitude and frequency are carried out using the
gradient algorithm, given by the following equations:

Âp(k) = Âp(k − 1) + 2ga ep(k − 1)cos(φ̂(k)) (22)

ŵ(k) = ŵ(k − 1) − 2gw ep(k − 1)sin(φ̂(k)) (23)

ga and gw are the adaptation parameters.

Using equations (18) and (23), the estimated phase is given by:

φ̂(k) = φ̂(k − 1) + Kwŵ(k) − KwNwŵ(k − 1) (24)

The basis structure of the MPLL is shown on figure 5.
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Fig. 5. Structure of the Magnitude Phase Locked Loop MPLL.
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3.2 The new multimodel supervision procedure

The identification error εi(k) depends only on the elementary disturbance peri-
ods Ti(k) and the disturbance estimated period T̂ (k) generated from the MPLL
mechanism. This error is given as:

εi(k) = T̂ (k) − Ti(k)

The structure of the multiple disturbance rejection with switching control is
given on the figure 6.
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Fig. 6. Structure of the multiple disturbance rejection.

4 Simulation results

To demonstrate the interest and the contribution in performance of the proposed
performance multimodel criterion, we maintain the same simulation conditions
given in the previous section.

Figure 7 gives the evolution of the system output. This figure shows that the
proposed multimodel strategy was, effective at rejecting harmonic disturbance in
the presence of multiple frequencies and magnitudes. It can be seen a perfect and
relatively rapid harmonic disturbance rejection, even in the presence of a phase
shift that appears at the middle of the harmonic disturbance evolution. This
proves the effectiveness of the proposed supervision procedure which combines
an adequate switching criterion with a MPLL scheme. The evolution of the
control signal is depicted in figure 8.

The figure 9 shows the switching evolution between the partial controllers.
Indeed, for a corresponding period Ti(k) one local controller which achieves
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Fig. 7. Evolution of the plant output (new supervision procedure).

0 500 1000 1500 2000 2500 3000
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Fig. 8. Evolution of the plant input (new supervision procedure).
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Fig. 9. Evolution of the controllers switching law (new supervision procedure).

disturbance rejection, is designed. Figure 10 illustrates the evolutions of the
estimated and the real period of the harmonic disturbance. This figure shows
clearly the effectiveness of the used estimation algorithm to provide disturbance
parameters evolutions. The estimated multiple harmonic disturbances applied
to the system output is given in figure 11.
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Fig. 10. Evolutions of the estimated and the real period disturbance.
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Fig. 11. Evolution of the estimated harmonic disturbance.

5 Conclusion

This paper investigates the problem of harmonic disturbances rejection with
simultaneously time varying frequency and phase drift. This problem was ap-
propriately handled using the multimodel approach. The proposed approach uses
an intelligent supervision that combines a suitable switching criterion with Mag-
nitude Phase Locked Loop algorithm. This proposed procedure depends only on
the elementary periods including in the harmonic disturbance and its estimated
period generated by the MPLL. For a given harmonic disturbance period, a local
controller based on the internal model principle is selected to satisfy the con-
trol objective. The simulation results show that the proposed strategy achieves
asymptotic multiple disturbances rejection even in the presence of disturbance
phase drift.
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