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Abstract. This paper deals with the parametric estimation of the squirrel-cage
asynchronous machine. The formulation of this parametric estimatidreonds
based on a least-square method and on knowledge of several expeiimea-
sures. We suppose that this asynchronous machine can be répddsga mul-
tivariable linear stochastic discrete-time state-space mathematical mduieth, w
contains known state variables and unknown time-varying parametescu:

sive parametric estimation algorithm is developed to estimate these parmmeter
The performances of this algorithm in the simulation test are quite satisfactor

Keywords. State space MIMO mathematical model; Parametric estimation; Re-
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1 Inroduction

In several industrial sectors, the requirements are isangly strong in terms of real
time management of applications, quality, production ,aediability of the processes,
and of person’s security. This requires increasingly pémverxommand tools and dy-
namic system’s methods. These methods are generally basEdeymining the system
mathematical model and its estimated parameters.

The asynchronous machine is the most reliable electric magcthe most robust of
its generation, and the least costly in manufacturing. Fgrgurpose, research in para-
metric estimation of asynchronous machine drew the atterdf several researchers
working on automatics. Thus, researchers are interestdtese problems and many
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studies, related to the modeling and to the asynchronousineparametric estima-
tion, are published in the literature (Bachir, 2002; DeH#86; Finch, 1998; Moreau,
1999; Koubaa, 2006).

This paper aims at studying the problems related to the petramestimation of an
asynchronous machine. This latter, is described as a MIM@ shathematical model,
with unknown time-varying parameters. The formulationto$ tparametric estimation
problem is based on a recursive algorithm of a parametrimagon.

The remainder of this paper is organized as follows: in thmisé paragraph, a
recursive parametric estimation algorithm is developédut third paragraph is devoted
to the asynchronous machine modeling. The parametric astimof the asynchronous
machine is studied in the fourth paragraph, and the fifthgragh concludes the work.

2 Parametric estimation recursive algorithm

The description of a dynamic MIMO system with time-varyirgrameters can be
explained by the following mathematical model:

2k + 1) = A(k + Da(k) + B(k + Du(k) +v(k) )
y(k) = Cx(k) + e(k)

wherez(k) € R", u(k) andy(k) represent the state vector, the input and the out-
put vector at the discrete-timig respectivelyp(k) € R™ is the random disturbance
vector which acts on the systewr(k) indicates the random disturbance which affects
the measurement of the outpytk), C represents the measurement matrix. The state
matrix A(k) and the command matri® (k) are represented, respectively, as:

an(k) e aln(k’)

an1(k) ... ann(k)

and
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B(k) = ®3)

We assume that the system noigé&) and the measurement noisg:) are white
Gaussian noise.

The parametric estimation problem of the dynamic multat&rsystem described as
a state mathematical model is composed of an estimatioreguoal development that
allows us to estimate the unknown parameters of4t¥e) and B(k) matrices.

The formulation of this problem is based on experimentalsuesments (input and
state sequences) originated in the considered system amihiging a quadratic crite-
rion comprising the prediction error (also called estimaterror), which is defined as:

(k) = z(k) — xp(k) (4)

with z, (k) the adjustable model state vector, as follows:

zp(k+1) = Ak 4+ 1)x(k) + B(k + 1)u(k) (5)

whereA(k + 1) and B(k + 1) are the estimated matrices dfk + 1) andB(k + 1) at
the discrete timek(+ 1), respectively.

For the estimation of the parameters of the two matri¢@s+ 1) et B(k + 1) of
the state mathematical model, we can use a modified versithe sécursive paramet-
ric estimation algorithm proposed by Kamoun (2007), whiels been developed for
monovariable systems:
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§(k) = z(k) — A(k)x(k — 1) — B(k)u(k — 1) (6)
(k) =

wherel(k) is a positive parametric gain arg; is the maximum eigenvalue of the
matrix R.

Stability condition analysis:

The state errob(k) intervening in the parametric estimation algorithm 6 cardbe
scribed by the following expression:

5(k) = A(k)z(k — 1) + B(k)u(k — 1) 7)
whereA(k) and B(k) are parametric errors represented respectively by:
A(k) = A— A(k) (8)
and
B(k) = B — B(k) (9)
Let us consider a Lyapunov functicti(k) on the parametric errors, such us:
X (k) = tr[BT (k) B(k)] + tr[AT (k) A(k)] (10)
we can express the variation of this Lyapunov function, i
AX(k+1) = X(k+1) — X(k) (11)
The parametric errord(k + 1) and B(k + 1) can be described as:
A(k+1) = A(k) — £(k)RO(K)xT (k — 1) (12)
and

B(k+1) = B(k) — £(k)RS(k)u” (k — 1) (13)
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We can easily show that the variatiahX (k + 1) of the considered Lyapunov func-
tion can be expressed as follows:

AX (k+1) = =2¢(k)[uT (k= 1)BT (k) + 2T (k — 1) AT (k)] RS (k) + €2(k)

ST () [ (k — Du(k — 1) + 2" (k — Va(k — )R Ra(k)
or, in a compact form:
AX(k+1) = =0T (k)o(k)d(k) (15)
where¢(k) is a matrix, which is described as:
¢(k) = 26(k)R — €*(k)p*(k — 1)R'R (16)
where the parametef (k — 1) is represented as follows:
P2k —1)=ul (k- Du(k — 1)+ 2T (k — Da(k — 1) (17)
therefore, the stability condition of Lyapunov is given by:
5T (k)[26(k)R — €2(k)p? (k — L)RT RJ3 (k) > 0 (18)
from (18), it is easy to obtain the following inequality:
Arp?(k — 1)E(k) < 2 (19)

The parametric gai§(k) is positive definite. This makes it possible to confirm
that the quantity\gp?(k — 1)&(k) is positive. Thus, we can express the inequality, as
follows:

1(k)

Sk = Arp?(k — 1)

(20)

where the parametétk) must satisfy the condition: < I(k) < 2.

The matrixR is a positive symmetric gain where the choice is mainly ezldb that
of the initial condition parametric estimation. Thus, iétmitial conditions parametric
estimation are close to the real parameters system, we bdasetsmall values in ma-
trix R for the recursive parametric estimation algorithm to beveoged. By selecting
big values in matrixk, there may be a risk of having fluctuations around the estichat
parameters. Therefore, if we select initial conditionsffam the real parameters, the
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recursive estimation parametric algorithm requires atioa in the beginning of the it-
erations. We have, therefore, to opt for a sufficiently biyea in matrixk to improve
the algorithm convergence speed. These results have be&mad by numerical sim-
ulation.

3 Asynchronous machine modeling

This paragraph is devoted to the modeling of a squirrel-eagachronous machine.
The passage from continuous model to discrete model is teskm the use of the
recursive parametric estimation algorithm (6).

3.1 Continuous mathematical model

The studied asynchronous machine can be described in tétims fwllowing con-
tinuous equation:

dx(t)
dt

= A(t)x(t) + Bu(t) (21)

wherez(t) andu(t), which represent the state vector and the input vector of the
asynchronous machine, respectively, are the following:

wT(t) = [ias(t) igs(t) dar(t) gr(t)] (22)
and

ul () = [uas(t) ugs(t)] (23)

The variable state of the state vectdt) is made up of the stator currents (¢),
i¢s(t) and the rotor flowspy, () et ¢, (¢). These currents and flows sizes are obtained
after the transformation of the three fixed phases of therssaid the rotor by an equiv-
alent rolling formed with two windings of quadratic axéandg.

The matricesA(t) and B are defined by the following expressions, respectively.
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a1 a1z a13(t) a1a(t)

azy  az  azs(t) ax(t) (24)

Alt) =
as1(t) as2(t) ass  asa
aq1(t) aso(t) asz  aua
. R, R, M M2 Lywn, (t) M, (t)
L.—M?L, L. (L.—MZ?L,) L.—MZ2L, L.—MZ2L,
R.M _ R.Lg __ MLswn(t) _ _Lswm(t)
_ | T.@.=M?L,) T L. (L.-MZ?L,) ~ L,(L.—M>L,) T.—MZ?L,
- _ MPLewm(t)  Mwn(t) . R, R,.M
L.—MZ2L, L.—MZ2L, L.—M?L,  L.(L.,-MZ?L,)
ML wnm(t) Lswm (t) R, M _ R, L
L. (L.—MZ?L,)  L.—MZ2L, L(L.—M?L,) — L,(L.—MZ?L,)
and
L2
bir 0O TirL 0
ML,
ba1 O _ I (L.—MZL,) 02 (25)
LS
0 b33 0 =i
ML,
0 ba3 0 T I (L.—MZL,)

whereL,, L., Rs, R, andM represent the stator cyclic inductance, the rotor cyclic
inductance, the stator resistance, the rotor resistaratéharstator-rotor mutual cyclic

inductance, respectively.

The varying matrix parameter§(t) are the parameters that depend on the mechanic
speedu,, (t).

The asynchronous machine presents a symmetry. We have:
aj1 = a3, A12 = A34, G21 = 43, G22 = 44, 013(t) = —az1(t), a1a(t) = —asza(t),
az3(t) = —as1(t), aza(t) = —asa(t), b1y = bss €tbyy = bys.

3.2 Discrete mathematical model
The passage from the continuous mathematical model to soectie mathematical

model is made possible by the first order development of oestrd(¢) and B. The
discrete model can have the following formulation:

a(k+ 1) = Aga(k) + Bau(k) (26)
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with
Ag =1+ AT,

By;=1T.B

wherel is the identity matrix. As far as the simulation stépis concerned, we
have to use a maximum calculation stBpnax. By evaluating the matrix trace, we
can, therefore, determine the maximum calculation step by:

trace(A(t)) = Ti (27)
which imposes for the simulation step:
AT, = _ (28)
“ trace(A(t))|

In this application, the maximum simulation step to be usel@99ms.

The passage from the continuous mathematical model to siceetit mathematical
model provides the following constant machine parameters:
a1 = 0.22; a1 = 0.98; a1 = 0.73; asx = —0.02, b1 = 0.7; ba; = —0.66.

There are two types of variation for time-varying parametéhe first corresponds
to the parameters,3(k), a14(k), as1 (k) andasz(k). The second corresponds to pa-
rametersios (k), az4(k), as1 (k) andasz (k). The curves of these two types variation are
given in details in Figure 1.
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Fig. 1. Evaluation curves of the parameters (k) andasi (k).
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4 Asynchronous machine parametric estimation

The estimation of the asynchronous machine parametersheittecursive paramet-
ric estimation algorithm, we must have the inpuik) and state vector variablgk) in
each discrete instait The curves of the stator voltages and of the stator currasts
well as the rotor flux are shown in Figures 2, 3 and 4.
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Fig. 2. Evaluation curves of the stator voltages (k) andugs (k).

100 100
iqs (k)

50} 50

o
o

—-50

-100 -100
(o] 250 500 750 1000 (0] 250 500 750 1000

Fig. 3. Evaluation curves of the stator curreits(k) andiqs (k).
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Fig. 4. Evaluation curves of the rotor flugy, (k) andgg. (k).
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We use the fixed parameter gais- 1.6 and the followingR matrix gain:

1000 0 0 O
1
R 0 1000 0 O (29)
0 0 1000 O

0 0 0 1000

The evaluation curves of the estimated paramétgrs:), ai2(k), a21 (k) andasga (k)
are shown in Figures 5 and 6.

The evaluation curves, (k) andas; (k), which represent the two variation types
are given in Figure 7.

We show in Figure 8 the evaluation curves of the estimatedrpeler§311(k) and
boy (k).
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Fig. 5. Evaluation curves of the estimated parametgigk) andai2 (k).
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Fig. 6. Evaluation curves of the estimated parametgigk) andas2 (k).
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250 500 750 1000 o 250 500 750 1000

Fig. 7. Evaluation curves of the estimated parametggsk) andas. (k).

- - bu(k) - = - b2 (k)
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Fig. 8. Evaluation curves of the estimated parametersk) andbs; (k).

The estimated parameters related to constant parameter®sbeillation in the be-
ginning of the estimation. Starting from the iteratibr= 500, the recursive algorithm
of the parametric estimation (6) converges towards thevadaks.

To evaluate the estimation quality of the recursive paramestimation algorithm
(6), we consider an erray,,,, which can be expressed by:

1 200
5(%]' = ﬁ Z(aij — fLij)Q (30)
k=1
withi,j = 1,...,4.

Table1 shows that the errors in the real and the estimated parasraetesmall. We
deduce, that the estimated values are close to the real ones.

Table 1. Average quadratic error between the real and the estimated parameters

Parametefzu(k) &12(/43) &21(]{?) dzz(k‘) Bu(k) le(k)
Sa;; | 107%[107% | 107° | 107? || 10~* | 0.005
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Concerning the varying-time parameters, we deduce thadtimated parameters
follow the real ones but there is a gap in the variation slépem the discrete instant
k = 750, the estimated parameter converges towards the real paramithout a gap.

To compensate the increase of the estimation éifloy, we rely on the parametric
gaini(k) by varying it exponentially or by using Fuzzy Logic techrégu These tech-
niques allow us to have a Fuzzy supervisor which has as am thewestimation error
and as an output the supervised parametric gain. The obtaimervised gain creates
an adaptation for the parametric gai#) of the parametric variation. If the estimation
error is big, the gain has a small value, and if the error idistha gain has a big value.
In the two cases, the gap between the estimated and the raal¢iers decreases. We
obtain the best estimation by integrating the superviséd sfaown in Figure 9. The
estimated parametric curves are shown in Figure 10.
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Fig. 9. Evaluation curves of the supervised gain for the estimatian ofk) andasi (k).
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Fig. 10.Evaluation curves of the estimated parametgrgk) andas: (k).
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Figure 10 shows that the parametric estimation is improwedding a supervised
gain in the recursive parametric estimation algorithm [@®leed, during the variation
instants, i.e, the first five hundred iterations, the inaezfshe estimation error brings
about a gap between the estimated parameter and the redlliséncrease is com-
pensated by the Fuzzy supervisor integrated in the paranmesttimation algorithm.
We obtain, therefore, in each discrete instanthe appropriate parametric gain value
according to the estimation error criterion. This makespa@metric estimation algo-
rithm more robust towards asynchronous machine estimatigations.

Effect of the state noise on the convergence of the Algorithm

The variance of the state noise must to be lower thaf, so that the estimated pa-
rameters converges towards the real values. If the variafiite state noise is superior
than0.03 the estimated parameteis; (k), ass(k), aqs(k) and,aqs4 (k) don't converge
towards the real values. Talechow the errob,,, (30) of these parameters in the case
of the variance of the state noise is lower tlap3 (var(v(k))<0.03) and, in the case
of the variance of state noise is superior tidaiB (var(v(k))>0.03). In the case of the
variance of the state noise is lower thad3 (var(v(k))<0.03) is small, but in the case of
the variance of state noise is superior tha8 (var(v(k))>0.03) this error is important.
We deduce that the choice of a small variance of state noisecisssary for obtaining
the convergence of all parameters.

Table 3.The errord,,, of the parameter&ss (k), Gsa(k), aas(k) andaaa (k)

parameter Q33 (k) d34(k,‘) Q43 (k’) &44(k)
8a,; (var(v(k)) < 0.03) 10~° | 107° | 107> | 107
da,;;(var(v(k))>0.03) 0.1 | 1.9 | 1.6 | 0.16

5 Conclusion

In this paper, we dealt with parametric estimation of an asyonous machine para-
metric estimation. This machine has been described as & rsi@hematical model,
which is continuous, multivariate, linear, stochastiahvkinown state variables but un-
known varying-time parameters and is able to vary accortbrigme. The parametric
estimation, with the use of a recursive parametric estonaigorithm, is studied after
the passage from the continuous mathematical model toetisorathematical model
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by the exponential matrix method. A recursive parametricregion algorithm is de-
veloped. The stability analysis of the estimation schenstudied. However, the esti-
mation of the varying time is imprecise. To improve the cageace, we have used a
varying parametric gain. This gain varies, exponentiatiycompensate the error esti-
mation increase, and it takes distinct values accordingrar estimation values. We
obtain, therefore, a supervised gain. This supervisedyarbeen obtained by Fuzzy
Logic techniques. The variance of the state noise has to b#, s that the estimated
parameters converges towards the real values. Othervesetill be some parameters
which diverge. By applying it on the asynchronous machirmampetric estimation, the
presented recursive parametric estimation algorithm hasgit about reliable perfor-
mance.
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