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Abstract. This paper deals with the parametric estimation of the squirrel-cage

asynchronous machine. The formulation of this parametric estimation problem is

based on a least-square method and on knowledge of several experimental mea-

sures. We suppose that this asynchronous machine can be represented by a mul-

tivariable linear stochastic discrete-time state-space mathematical model, which

contains known state variables and unknown time-varying parameters. Arecur-

sive parametric estimation algorithm is developed to estimate these parameters.

The performances of this algorithm in the simulation test are quite satisfactory.

Keywords. State space MIMO mathematical model; Parametric estimation; Re-

cursive parametric estimation algorithm; Asynchronous machine.

1 Inroduction

In several industrial sectors, the requirements are increasingly strong in terms of real

time management of applications, quality, production cost, reliability of the processes,

and of person’s security. This requires increasingly powerful command tools and dy-

namic system’s methods. These methods are generally based on determining the system

mathematical model and its estimated parameters.

The asynchronous machine is the most reliable electric machine, the most robust of

its generation, and the least costly in manufacturing. For this purpose, research in para-

metric estimation of asynchronous machine drew the attention of several researchers

working on automatics. Thus, researchers are interested inthese problems and many
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studies, related to the modeling and to the asynchronous machine parametric estima-

tion, are published in the literature (Bachir, 2002; Dehay,1996; Finch, 1998; Moreau,

1999; Koubaa, 2006).

This paper aims at studying the problems related to the parametric estimation of an

asynchronous machine. This latter, is described as a MIMO state mathematical model,

with unknown time-varying parameters. The formulation of this parametric estimation

problem is based on a recursive algorithm of a parametric estimation.

The remainder of this paper is organized as follows: in the second paragraph, a

recursive parametric estimation algorithm is developed. The third paragraph is devoted

to the asynchronous machine modeling. The parametric estimation of the asynchronous

machine is studied in the fourth paragraph, and the fifth paragraph concludes the work.

2 Parametric estimation recursive algorithm

The description of a dynamic MIMO system with time-varying parameters can be

explained by the following mathematical model:

x(k + 1) = A(k + 1)x(k) + B(k + 1)u(k) + v(k) (1)

y(k) = Cx(k) + e(k)

wherex(k) ∈ Rn, u(k) andy(k) represent the state vector, the input and the out-

put vector at the discrete-timek, respectively,v(k) ∈ Rn is the random disturbance

vector which acts on the system,e(k) indicates the random disturbance which affects

the measurement of the outputy(k), C represents the measurement matrix. The state

matrixA(k) and the command matrixB(k) are represented, respectively, as:

A(k) =





a11(k) . . . a1n(k)

. . . . .

. . . . .

. . . . .

an1(k) . . . ann(k)




(2)

and
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B(k) =





b11(k) . . . b1m(k)

. . . . .

. . . . .

. . . . .

bn1(k) . . . bnm(k)




(3)

We assume that the system noisev(k) and the measurement noisee(k) are white

Gaussian noise.

The parametric estimation problem of the dynamic multivariate system described as

a state mathematical model is composed of an estimation procedural development that

allows us to estimate the unknown parameters of theA(k) andB(k) matrices.

The formulation of this problem is based on experimental measurements (input and

state sequences) originated in the considered system and minimizing a quadratic crite-

rion comprising the prediction error (also called estimation error), which is defined as:

δ(k) = x(k) − xp(k) (4)

with xp(k) the adjustable model state vector, as follows:

xp(k + 1) = Â(k + 1)x(k) + B̂(k + 1)u(k) (5)

whereÂ(k + 1) andB̂(k + 1) are the estimated matrices ofA(k + 1) andB(k + 1) at

the discrete time (k + 1), respectively.

For the estimation of the parameters of the two matricesA(k + 1) et B(k + 1) of

the state mathematical model, we can use a modified version ofthe recursive paramet-

ric estimation algorithm proposed by Kamoun (2007), which has been developed for

monovariable systems:

1356   IJ-STA, Volume 4, N°2, December, 2010.      
 



Â(k + 1) = Â(k) + ξ(k)Rδ(k)xT (k − 1)

B̂(k + 1) = B̂(k) + ξ(k)Rδ(k)uT (k − 1)

δ(k) = x(k) − Â(k)x(k − 1) − B̂(k)u(k − 1) (6)

ξ(k) =
l(k)

λR[uT (k − 1)u(k − 1) + xT (k − 1)x(k − 1)]

wherel(k) is a positive parametric gain andλR is the maximum eigenvalue of the

matrixR.

Stability condition analysis:

The state errorδ(k) intervening in the parametric estimation algorithm 6 can bede-

scribed by the following expression:

δ(k) = Ã(k)x(k − 1) + B̃(k)u(k − 1) (7)

whereÃ(k) andB̃(k) are parametric errors represented respectively by:

Ã(k) = A − Â(k) (8)

and

B̃(k) = B − B̂(k) (9)

Let us consider a Lyapunov functionX(k) on the parametric errors, such us:

X(k) = tr[BT (k)B(k)] + tr[AT (k)A(k)] (10)

we can express the variation of this Lyapunov function, noted by:

∆X(k + 1) = X(k + 1) − X(k) (11)

The parametric errors̃A(k + 1) andB̃(k + 1) can be described as:

Ã(k + 1) = Ã(k) − ξ(k)Rδ(k)xT (k − 1) (12)

and

B̃(k + 1) = B̃(k) − ξ(k)Rδ(k)uT (k − 1) (13)
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We can easily show that the variation∆X(k +1) of the considered Lyapunov func-

tion can be expressed as follows:

∆X(k + 1) = −2ξ(k)[uT (k − 1)B̃T (k) + xT (k − 1)ÃT (k)]Rδ(k) + ξ2(k)

(14)
δT (k)[uT (k − 1)u(k − 1) + xT (k − 1)x(k − 1)]RT Rδ(k)

or, in a compact form:

∆X(k + 1) = −δT (k)φ(k)δ(k) (15)

whereφ(k) is a matrix, which is described as:

φ(k) = 2ξ(k)R − ξ2(k)ρ2(k − 1)RT R (16)

where the parameterρ2(k − 1) is represented as follows:

ρ2(k − 1) = uT (k − 1)u(k − 1) + xT (k − 1)x(k − 1) (17)

therefore, the stability condition of Lyapunov is given by:

δT (k)[2ξ(k)R − ξ2(k)ρ2(k − 1)RT R]δ(k) > 0 (18)

from (18), it is easy to obtain the following inequality:

λRρ2(k − 1)ξ(k) < 2 (19)

The parametric gainξ(k) is positive definite. This makes it possible to confirm

that the quantityλRρ2(k − 1)ξ(k) is positive. Thus, we can express the inequality, as

follows:

ξ(k) =
l(k)

λRρ2(k − 1)
(20)

where the parameterl(k) must satisfy the condition:1 < l(k) < 2.

The matrixR is a positive symmetric gain where the choice is mainly related to that

of the initial condition parametric estimation. Thus, if the initial conditions parametric

estimation are close to the real parameters system, we have to use small values in ma-

trix R for the recursive parametric estimation algorithm to be converged. By selecting

big values in matrixR, there may be a risk of having fluctuations around the estimated

parameters. Therefore, if we select initial conditions farfrom the real parameters, the
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recursive estimation parametric algorithm requires correction in the beginning of the it-

erations. We have, therefore, to opt for a sufficiently big values in matrixR to improve

the algorithm convergence speed. These results have been confirmed by numerical sim-

ulation.

3 Asynchronous machine modeling

This paragraph is devoted to the modeling of a squirrel-cageasynchronous machine.

The passage from continuous model to discrete model is essential for the use of the

recursive parametric estimation algorithm (6).

3.1 Continuous mathematical model

The studied asynchronous machine can be described in terms of the following con-

tinuous equation:

dx(t)

dt
= A(t)x(t) + Bu(t) (21)

wherex(t) andu(t), which represent the state vector and the input vector of the

asynchronous machine, respectively, are the following:

xT (t) = [ ids(t) iqs(t) φdr(t) φqr(t) ] (22)

and

uT (t) = [uds(t) uqs(t) ] (23)

The variable state of the state vectorx(t) is made up of the stator currentsids(t),

iqs(t) and the rotor flowsφdr(t) et φqr(t). These currents and flows sizes are obtained

after the transformation of the three fixed phases of the stator and the rotor by an equiv-

alent rolling formed with two windings of quadratic axesd andq.

The matricesA(t) andB are defined by the following expressions, respectively.
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A(t) =





a11 a12 a13(t) a14(t)

a21 a22 a23(t) a24(t)

a31(t) a32(t) a33 a34

a41(t) a42(t) a43 a44




(24)

=





− Rs

Ls−M2Lr

RrM
Lr(Ls−M2Lr)

M2Lrωm(t)
Ls−M2Lr

Mωm(t)
Ls−M2Lr

RsM
Lr(Ls−M2Lr) − RrLs

Lr(Ls−M2Lr) − MLsωm(t)
Lr(Ls−M2Lr) − Lsωm(t)

Ls−M2Lr

−M2Lrωm(t)
Ls−M2Lr

− Mωm(t)
Ls−M2Lr

− Rs

Ls−M2Lr

RrM
Lr(Ls−M2Lr)

MLsωm(t)
Lr(Ls−M2Lr)

Lsωm(t)
Ls−M2Lr

RsM
Lr(Ls−M2Lr) − RrLs

Lr(Ls−M2Lr)





and

B =





b11 0

b21 0

0 b33

0 b43




=





L2

s

Ls−M2Lr
0

− MLs

Lr(Ls−M2Lr) 0

0
L2

s

Ls−M2Lr

0 − MLs

Lr(Ls−M2Lr)




(25)

whereLs, Lr, Rs, Rr andM represent the stator cyclic inductance, the rotor cyclic

inductance, the stator resistance, the rotor resistance and the stator-rotor mutual cyclic

inductance, respectively.

The varying matrix parametersA(t) are the parameters that depend on the mechanic

speedωm(t).

The asynchronous machine presents a symmetry. We have:

a11 = a33, a12 = a34, a21 = a43, a22 = a44, a13(t) = −a31(t), a14(t) = −a32(t),

a23(t) = −a41(t), a24(t) = −a42(t), b11 = b33 et b21 = b43.

3.2 Discrete mathematical model

The passage from the continuous mathematical model to the discrete mathematical

model is made possible by the first order development of matricesA(t) andB. The

discrete model can have the following formulation:

x(k + 1) = Adx(k) + Bdu(k) (26)
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with

Ad = I + ATe

Bd = TeB

whereI is the identity matrix. As far as the simulation stepTe is concerned, we

have to use a maximum calculation stepTemax. By evaluating the matrix trace, we

can, therefore, determine the maximum calculation step by:

trace(A(t)) =
1

Te

(27)

which imposes for the simulation step:

∆Te =
1

|trace(A(t))|
(28)

In this application, the maximum simulation step to be used is 1,099ms.

The passage from the continuous mathematical model to the discrete mathematical

model provides the following constant machine parameters:

a11 = 0.22; a12 = 0.98; a21 = 0.73; a22 = −0.02, b11 = 0.7; b21 = −0.66.

There are two types of variation for time-varying parameters. The first corresponds

to the parametersa13(k), a14(k), a41(k) anda42(k). The second corresponds to pa-

rametersa23(k), a24(k), a31(k) anda32(k). The curves of these two types variation are

given in details in Figure 1.
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Fig. 1.Evaluation curves of the parametersa13(k) anda31(k).
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4 Asynchronous machine parametric estimation

The estimation of the asynchronous machine parameters withthe recursive paramet-

ric estimation algorithm, we must have the inputu(k) and state vector variablex(k) in

each discrete instantk. The curves of the stator voltages and of the stator currents, as

well as the rotor flux are shown in Figures 2, 3 and 4.
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Fig. 2.Evaluation curves of the stator voltageuds(k) anduqs(k).
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Fig. 3.Evaluation curves of the stator currentsids(k) andiqs(k).
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Fig. 4.Evaluation curves of the rotor fluxφdr(k) andφqr(k).
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We use the fixed parameter gainl = 1.6 and the followingR matrix gain:

R =





1000 0 0 0

0 1000 0 0

0 0 1000 0

0 0 0 1000




(29)

The evaluation curves of the estimated parametersâ11(k), â12(k), â21(k) andâ22(k)

are shown in Figures 5 and 6.

The evaluation curveŝa13(k) and â31(k), which represent the two variation types

are given in Figure 7.

We show in Figure 8 the evaluation curves of the estimated parameterŝb11(k) and

b̂21(k).
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â12(k)

k k

Fig. 5.Evaluation curves of the estimated parametersâ11(k) andâ12(k).
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Fig. 6.Evaluation curves of the estimated parametersâ21(k) andâ22(k).
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Fig. 7.Evaluation curves of the estimated parametersâ13(k) andâ31(k).

0   250 500 750 1000
−1

0 

1 

2 

3 

4 

0   250 500 750 1000
−3

−2

−1

0 

1 

2 

b11(k)
b̂11(k)

b21(k)
b̂21(k)

k k

Fig. 8.Evaluation curves of the estimated parametersb̂11(k) andb̂21(k).

The estimated parameters related to constant parameters have oscillation in the be-

ginning of the estimation. Starting from the iterationk = 500, the recursive algorithm

of the parametric estimation (6) converges towards the realvalues.

To evaluate the estimation quality of the recursive parametric estimation algorithm

(6), we consider an errorδaij
, which can be expressed by:

δaij
=

1

200

200∑

k=1

(aij − âij)
2 (30)

with i, j = 1, ..., 4.

Table1 shows that the errors in the real and the estimated parameters are small. We

deduce, that the estimated values are close to the real ones.

Table 1.Average quadratic error between the real and the estimated parameters

.
Parameter̂a11(k) â12(k) â21(k) â22(k) b̂11(k) b̂21(k)

δaij
10−5 10−5 10−5 10−3 10−4 0.005
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Concerning the varying-time parameters, we deduce that theestimated parameters

follow the real ones but there is a gap in the variation slope.From the discrete instant

k = 750, the estimated parameter converges towards the real parameter without a gap.

To compensate the increase of the estimation errorδ(k), we rely on the parametric

gain l(k) by varying it exponentially or by using Fuzzy Logic techniques. These tech-

niques allow us to have a Fuzzy supervisor which has as an input the estimation error

and as an output the supervised parametric gain. The obtained supervised gain creates

an adaptation for the parametric gainl(k) of the parametric variation. If the estimation

error is big, the gain has a small value, and if the error is small, the gain has a big value.

In the two cases, the gap between the estimated and the real parameters decreases. We

obtain the best estimation by integrating the supervised gain shown in Figure 9. The

estimated parametric curves are shown in Figure 10.
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Fig. 9.Evaluation curves of the supervised gain for the estimation ofa13(k) anda31(k).
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Fig. 10.Evaluation curves of the estimated parametersâ13(k) andâ31(k).
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Figure 10 shows that the parametric estimation is improved by using a supervised

gain in the recursive parametric estimation algorithm (6).Indeed, during the variation

instants, i.e, the first five hundred iterations, the increase of the estimation error brings

about a gap between the estimated parameter and the real one.This increase is com-

pensated by the Fuzzy supervisor integrated in the parametric estimation algorithm.

We obtain, therefore, in each discrete instantk, the appropriate parametric gain value

according to the estimation error criterion. This makes theparametric estimation algo-

rithm more robust towards asynchronous machine estimationvariations.

Effect of the state noise on the convergence of the Algorithm

The variance of the state noise must to be lower than0.03, so that the estimated pa-

rameters converges towards the real values. If the varianceof the state noise is superior

than0.03 the estimated parametersâ33(k), â34(k), â43(k) and,â44(k) don’t converge

towards the real values. Table3 chow the errorδaij
(30) of these parameters in the case

of the variance of the state noise is lower than0.03 (var(v(k))<0.03) and, in the case

of the variance of state noise is superior than0.03 (var(v(k))>0.03). In the case of the

variance of the state noise is lower than0.03 (var(v(k))<0.03) is small, but in the case of

the variance of state noise is superior than0.03 (var(v(k))>0.03) this error is important.

We deduce that the choice of a small variance of state noise isnecessary for obtaining

the convergence of all parameters.

Table 3.The errorδaij
of the parameterŝa33(k), â34(k), â43(k) andâ44(k)

parameter â33(k) â34(k) â43(k) â44(k)

δaij
(var(v(k))< 0.03) 10−5 10−5 10−5 10−3

δaij
(var(v(k))> 0.03) 0.1 1.9 1.6 0.16

5 Conclusion

In this paper, we dealt with parametric estimation of an asynchronous machine para-

metric estimation. This machine has been described as a state mathematical model,

which is continuous, multivariate, linear, stochastic, with known state variables but un-

known varying-time parameters and is able to vary accordingto time. The parametric

estimation, with the use of a recursive parametric estimation algorithm, is studied after

the passage from the continuous mathematical model to discrete mathematical model
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by the exponential matrix method. A recursive parametric estimation algorithm is de-

veloped. The stability analysis of the estimation scheme isstudied. However, the esti-

mation of the varying time is imprecise. To improve the convergence, we have used a

varying parametric gain. This gain varies, exponentially,to compensate the error esti-

mation increase, and it takes distinct values according to error estimation values. We

obtain, therefore, a supervised gain. This supervised gainhas been obtained by Fuzzy

Logic techniques. The variance of the state noise has to be small, so that the estimated

parameters converges towards the real values. Otherwise there will be some parameters

which diverge. By applying it on the asynchronous machine parametric estimation, the

presented recursive parametric estimation algorithm has brought about reliable perfor-

mance.
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