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Abstract. In this paper, a new second order sliding mode control (SOSMC)
for coupled (multi-input multi-output) MIMO nonlinear system is pre-
sented, the proposed method can be applied to a large class of nonlinear
coupled MIMO processes affected by parameters uncertainties and dis-
turbances. This algorithm are implemented on the three tanks test-bed
system and the exprimental results confirm the effectiveness of our con-
trol design.
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1 Introduction

Sliding mode control techniques design simple control laws which constrain the
system motion on suitably chosen manifolds. The sliding motion is guaranteed
despite uncertainties and strong nonlinearities, and is characterized by good
properties (invariance, perfect tracking)[1-2]. But the major drawback of the con-
ventional classic sliding mode control is the existence of chattering phenomenon
[3]. To avoid this problem second order sliding mode control (SOSMC) has been
proposed.

The multivariable case has been extensively studied in the framework of the
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Classic SMC. However there are very few results in the literature about the gen-
eration of second order sliding modes for MIMO systems. This is mainly due to
the coupling between the various outputs of the system and the considerate sur-
faces. In [4-10] authors have considered the multivariable system as a collection
of mono-variable (SISO) systems and they have applied the sliding mode control
algorithms to SISO systems without considering the coupling.

In this paper, we propose a new second order sliding mode control for MIMO
uncertain coupled systems which permit the taking into account Coupling, pa-
rameters uncertainties and disturbances. Exprimental results are presented to
illustrate the effectiveness of the proposed controllers.

The paper is organized as follows. In section 2 second order sliding mode control
of coupled MIMO nonlinear systems is proposed. Its robustness to parametric
uncertainties and external disturbances is studied in section 3. The model of the
coupled three tanks system and its controls by SMC of this system are developed
in section 4. The exprimental resultants are presented in section 5. Finally the
conclusion is given in section 6.

2 Second order sliding mode control

Consider a MIMO nonlinear system which has p inputs and m outputs defined
by the following state representation:

{

ẋ = f(t, x) + g(t, x)u
y = c(t, x)

(1)

with:
x the n-dimensional state vector.

x = [x1 · · ·xn]
T (2)

y the m-dimensional output vector.

y = [y1 · · · ym]T (3)

c(t, x) : is a vector of dimension m whose coefficients are nonlinear functions
ci(x, t).
f(t, x): is a vector of dimension n the coefficients of which are nonlinear functions
fi(x, t).
g(t, x) a (n× p) matrix the coefficients are the nonlinear functions gij(x, t).
u : is the p dimensional control vector of coefficients ui.

u = [u1 · · ·up]
T (4)

Consider the sliding surface [11] defined by:

s = [s1 · · · sp]T (5)
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where:

si =

ri−1
∑

k=0

λ
(i)
k e

(k)
i , for i = 1, . . . , p (6)

with:
λ
(i)
ri−1 = 1 and k = 0, . . . , ri − 2

ri : is the relative degree of the sliding surface si.

λ
(i)
k : are constants chosen to have

∑ri−1
k=0 λ

(i)
k P k a Hurwitz polynomial.

ei = yi − ydi = ci(t, x)− ydi .

e
(k)
i : is the k − th order derivative of the error.

The derivative of every surface si is:

dsi

dt
=

∂ si

∂t
+

n
∑

j=1

∂ si

∂xj

ẋj (7)

dsi

dt
=

∂ si

∂t
+

n
∑

j=1

∂ si

∂xj

(fj + gj1u1 + · · ·+ gjpup) (8)

dsi

dt
=

∂ si

∂t
+

n
∑

j=1

∂ si

∂xj

fj +

n
∑

j=1

∂ si

∂xj

gj1u1 + · · ·+
n
∑

j=1

∂ si

∂xj

gjpup (9)

dsi

dt
= hi + bi1u1 + · · ·+ bipup = fi +

p
∑

k=1

bikuk (10)

with:

hi =
∂ si

∂t
+

n
∑

j=1

∂ si

∂xj

fj (11)

bik =
n
∑

j=1

∂ si

∂xj

gjk (12)

Then one can write the derivative of surface vector under the following shape:

ṡ = h+ bu (13)

with:

h = [h1 · · ·hp]
T and b =







b11 · · · b1P
...

. . .
...

bP1 · · · bPP






.

Theorem 1. The control law for the second order sliding mode control (SOSMC)
of the system (1) so that the sliding surfaces and heir derivatives go to zero in
a finite time is defined by:

u = −b−1






h+







k1sign(s1 + s̈1)
...

kpsign(sp + s̈p)












(14)

where ki are positive constants and b an inversible matrix.
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Proof. We consider the following Lyapunov function:

V =
1

2
(sT s+ ṡT ṡ) =

1

2

p
∑

i=1

(s2i + ṡ2i ) (15)

the derivative of V is:

V̇ =

p
∑

i=1

(ṡisi + ṡis̈i) = (s+ s̈)T ṡ (16)

Remplacing ṡ by its value in (13) and assuming the control given by(14)

ṡ = h+ bu = −







k1sign(s1 + s̈1)
...

kpsign(sp + s̈p)






(17)

The expression of V̇ becomes:

V̇ = −(s+ s̈)T







k1sign(s1 + s̈1)
...

kpsign(sp + s̈p)






(18)

then

V̇ = −
p
∑

i=1

ki(si + s̈i)sign(si + s̈i) (19)

V̇ = −
p
∑

i=1

ki|si + s̈i| ≤ 0 (20)

Then, the Lyapunov function V tends to 0 and therefore all surfaces si tend to
zero and their derivative, hence the existence of second order sliding mode.

Remark. The problem in the realisation of this control is that s̈i is not available
and must be estimated. To do that we use p second order differentiators [13].

żi0 = νi0, νi0 = −λi0 |zi0 − si(t)|
2

3 sign(zi0 − si(t)) + zi1

żi1 = νi1, νi1 = −λi1|zi1 − νi0|
1

2 sign(zi1 − νi0) + zi2
żi2 = −λi2sign(zi2 − νi1)

which supplies us with zi0, zi1 and zi2 the estimates of si, ṡi, s̈i, for i = 1
to p. (p is the number of sliding surfaces)
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3 Robustness to parametric uncertainties and external

disturbances

Consider au uncertain MIMO nonlinear system :

ẋ = f̂(t, x) +∆f(t, x) + (ĝ(t, x) +∆g(t, x))u+ d (21)

Where x ∈ ℜn is the state vector, u ∈ ℜp is the input control bounded as
|ui| ≤ uimax for i=1 to p, the vector field f = f̂(t, x) +∆f(t, x) , is continuous

and smooth, Where f̂(t, x) is the nominal part and ∆f(t, x) is the uncertain
part bounded by a known function,d ∈ D ⊂ ℜp represent the disturbances.
The dynamic g(t, x), are not exactly known and it is written as the sum of the
nominal part ĝ and the uncertain part ∆g.
with:

f̂(t, x) =







f̂1(t, x)
...

f̂n(t, x)






, ∆f(t, x) =







∆f1(t, x)
...

∆fn(t, x)






,

d =







d1
...
dp






, ĝ =







ĝ11(t, x) · · · ĝ1p(t, x)
...

. . .
...

ĝp1(t, x) · · · ĝpp(t, x)







and ∆g =







∆g11(t, x) · · · ∆g1p(t, x)
...

. . .
...

∆gp1(t, x) · · · ∆gpp(t, x)






.

Then the derivative of the sliding surface takes the following form:

dsi

dt
= ĥi +∆hi +

p
∑

k=1

(b̂ik +∆bik)uk (22)

with:

ĥi =
∂ si

∂ t
+

n
∑

j=1

∂ si

∂ xj

f̂j , ∆hi =

n
∑

j=1

∂ si

∂ xj

∆fj ,

b̂ik =

n
∑

j=1

∂ si

∂ xj

ĝjk, ∆bik =

n
∑

j=1

∂ si

∂ xj

∆gjk, and δi =

n
∑

j=1

∂ si

∂ xj

di.

We can rewrite the derivative of the surface as follows:

ṡ = ĥ+∆h+ (b̂+∆b)u+ δ (23)
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with :

ĥ(t, x) =







ĥ1(t, x)
...

ĥp(t, x)






, ∆h(t, x) =







∆h1(t, x)
...

∆hp(t, x)






,

δ =







δ1
...
δp






, b̂ =







b̂11(t, x) · · · b̂1p(t, x)
...

. . .
...

b̂p1(t, x) · · · b̂pp(t, x)







and ∆b =







∆b11(t, x) · · · ∆b1p(t, x)
...

. . .
...

∆bp1(t, x) · · · ∆bpp(t, x)







Theorem 2. Consider the uncertain system defined by equation (21). The con-
trol law :

u = −b̂−1






ĥ+







k1sign(s1 + s̈1)
...

kpsign(sp + s̈p)












(24)

with ki satisfying:

ki > αi + δ∗ + βi1u1max + · · ·+ βipupmax (25)

where:
|∆hi| < αi, |∆bij | < βij , |δi| < δ∗i and |ui| < uimax (26)

ensures the convergence of the sliding surface and its derivative to zero.

Proof. Using the control law (24) the expression of the derivative of the surface
becomes:

u = −b̂−1






ĥ+







k1sign(s1 + s̈1)
...

kpsign(sp + s̈p)













The expression of the derivative of the surface becomes:

ṡ = ĥ+ b̂u+∆h+∆bu+ δ (27)

The derivative of the surface si is then written:

ṡi = −kisign(si + s̈i) +

p
∑

k=1

∆bikuk + δi (28)
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if si + s̈i > 0, we must have
∆hi − ki +∆bi1u1 +

∑p

k=1 ∆bikuk + δi < 0
then:

ki > ∆hi +

p
∑

k=1

∆bikuk + δi (29)

if si + s̈i < 0, we must have
∆hi + ki +

∑p

k=1 ∆bikuk + δi > 0
then:

ki > −∆hi −
p
∑

k=1

∆bikuk − δi (30)

The condition (29) and (30) are satisfied if:

ki > αi +

p
∑

k=1

βikukmax + δ∗i (31)

then V̇ < 0, which end the proof.

4 Coupled-Tanks System

4.1 Sytem description and modeling

The process considered is a three tank system, which have two inputs and three
outputs. It consists of three cylindrical tanks with identical section a supplied
with distilled water, which are serially interconnected by two cylindrical pipes of
identical sections Sn. The pipes of communication between the tanks T1 and T2

are equipped with manually adjustable values; the flow rates of the connection
pipes can be controlled using ball valves az1 and az2. The plant has one outlet
pipe located at the bottom of tank T3. There are three other pipes installed at
the bottom of each Tank, they are provided with a direct connection (outflow
rate) to the reservoir with ball valves bz1, bz2 and bz3, respectively, it can only
be manipulated manually. The pumps 1 and 2 are supplied by water from the
water tank below the three tanks with flow rates Q1(t) and Q2(t), respectively.
The necessary level measurements h1(t), h2(t) and h3(t) are carried out by the
piezo-resistive differential pressure sensors. The state equations are obtained by
writing that the variation of the volume of water in a tank is equal to the sum of
the incoming flow minus the sum of outgoing flows, that means, the water of the
tanks 1and 2 can flow toward the tank 3. Then, the system can be represented
by the following equations:

ḣi(t) =
1

A
(Qin

i (t)−Qout1
ij (t)−Qout2

ij (t)) i, j = 1, 2, 3 (32)

where Qout1
ij (t) represents the flow rates of water between the tanks i and j

(i, j = 1, 2, 3∀ i 6= j), and can be expressed while using the law of Torricelli[12].

Qout1
ij (t) = aziSnsign(hi − hj)

√

2g|hi − hj |, i = 1, 3 (33)
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Fig. 1. Laboratory experiment : Thtree tank system

and Qout2
ij (t) represent the outflow rate, given by:

Qout2
ij (t) = bzjSL

√

2ghi j = 1, 2, 3, 4 (34)

Where hi(t), Q
in
i (t) and Qout

ij (t) are respectively the levels of water, the input
flow and the output flow rates.
The controlled signal is the water levels (h2, h3) of tank 2 and tank 3. This level
is controlled by two pumps P1 and P2. The system can be considered as a multi
inputs multi outputs system (MIMO) where the inputs is inflow rate Q1, Q2 and
outputs is liquid levels h2, h3. Then the three tanks system can be modeled by
the following three differential equations:

dh1

dt
= −c1sign(h1 − h3)

√

|h1 − h3|+
Q1

a
−B1

√

h1 (35)

dh2

dt
= c3sign(h3 − h2)

√

|h3 − h2|+
Q2

a
− (B4 +B2)

√

h2 (36)

dh3

dt
= c1sign(h1 − h3)

√

|h1 − h3| −B3

√

h3 − c3sign(h3 − h2)
√

|h3 − h2| (37)

While taking B1 = B2 = B3 = 0, the three equations of the system become:

dh1

dt
= −c1sign(h1 − h3)

√

|h1 − h3|+
Q1

a
(38)

dh2

dt
= c3sign(h3 − h2)

√

|h3 − h2|+
Q2

a
−B4

√

h2 (39)

dh3

dt
= c1sign(h1 − h3)

√

|h1 − h3| − c3sign(h3 − h2)
√

|h3 − h2| (40)

Where the parameters are defined by:

ci =
1

a
aziSn

√

2g i = 1, 3

Bj =
1

a
bzjSL

√

2g j = 1, 2, 3, 4
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At equilibrium, for constant water level set point, the level derivatives must
be zero.

ḣ1 = ḣ2 = ḣ3 = 0 (41)

Therefore, using (45) in the steady state, the following algebraic relationship
holds.

{

−c1sign(h1 − h3)
√

|h1 − h3|+ Q1

a
= 0

c1sign(h1 − h3)
√

|h1 − h3| − c3sign(h3 − h2)
√

|h3 − h2 = 0
(42)

then:
{

−c1sign(h1 − h3)
√

|h1 − h3| = Q1

a

c1sign(h1 − h3)
√

|h1 − h3| = c3sign(h3 − h2)
√

|h3 − h2
(43)

For the coupled tanks system, the fluid flow, Q1, into Tank 1, cannot be negative
because the pump can only drive water into the tank. Therefore, the constraint
on the inflow rate is given by:

Q1 ≥ 0 (44)

From (47) and to satisfy the constraint (48) on the input flow rate, we should
have c1sign(h1 − h3) ≥ 0 and c3sign(h3 − h2) ≥ 0, which implies:

sign(h1 − h3) = sign(h3 − h2) = 1 (45)

One puts:
x1 = h1, x2 = h2, u1 = Q1 and u2 = Q2 (46)

Then we obtain:

ẋ1 = −c1sign(x1 − x3)
√

|x1 − x3|+
u1

a
(47)

ẋ2 = c3sign(x3 − x2)
√

|x3 − x2| −B4
√
x2 +

u2

a
(48)

ẋ3 = c1sign(x1 − x3)
√

|x1 − x3| − c3sign(x3 − x2)
√

|x3 − x2| (49)
{

ẋ = f(t, x) + gu

y = cx
(50)

where: x = [x1 x2 x3]
T , u = [u1 u2]

T , y = [x2 x3]
T ,

f =





−c1
√
x1 − x3

c3
√
x3 − x2 −B4

√
x2

c1
√
x1 − x3 − c3

√
x3 − x2





and

g =





1
a
0

0 1
a

0 0
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4.2 Sliding Mode Control of the three tanks system:

The objective is to regulate the two water levels of tank 2 and tank 3 by using
sliding mode control. The vector of the sliding surface is given by:

s = [s1 s2]
where:

s1 = (x2 − x2d) and s2 = λ(x3 − x3d) + (ẋ3 − ẋ3d)

x2d and x3d: are the desired water levels of tank 2 and 3.

The derivatives of the sliding surfaces s1 can written as follows:

ṡ1 = h1 + b12u2 (51)

with:

h1 = (c3
√

(x3 − x2)−B4
√
x2 − ẋ2d) and b12 = 1

a
.

Similarly, the derivative of s2 is as follows:

ṡ2 = h2 + b21u1 + b22u2 (52)

with:

h2 = λ(c1
√

(x1 − x3)− c3
√

(x3 − x2)− ẋ3d) + c1
2c1

√
(x1−x3)−c3

√
(x3−x2)

2
√

(x1−x3)

− c3
−c1

√
(x1−x3)+2c3

√
(x3−x2)

2
√

(x1−x3)+B4

√
x2

− ẋ3d, b21 = c1
1

2a
√

(x1−x3)
and b22 = c3

1

2a
√

(x3−x2)

then:

ṡ = h+ bu (53)

with:

b =

(

h1

h2

)

and b =

(

0 b12
b21 b22

)

The control vector of SOSMC is:

u = −b−1(h+

[

k1sign(s1 + s̈1)
k2sign(s2 + s̈2)

]

) (54)

with:

b−1 =

(

ac3
√
x1−x3

c1
√
x3−x2

2a
√
x1−x3

c1

a 0

)
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5 Exprimental results

The proposed control algorithms were tested on the physical laboratory plant
(Fig. 2) consisting of interconnected three tanks system. The objective is to
control the liquid level of tanks two and three. The experimental schemes have
been done under Matlab/Simulink, using Real-Time Interface, and run on the
DS1102 DSPACE system, which is equipped by a power PC processor. The con-
trol algorithm is implemented on DSP (TMS 320C31). For given references we

  

Fig. 2. Laboratory experiment : Thtree tank system

remark that water levels h2d and h3dreach their references without overshoot-
ing. When we change the references we obtain the same response. In order to
test the robustness of our strategy with respect to parameter uncertainties and
disturbances, we varied the parameters c1 and c3 by closing and opening a little
bit the valves az1 and az2 and we introduce a permanent leakage in the outflow
pipes of tank 2 and tank 3 at t = 1500s. We can see fig 2 and fig 3 that, in spite
of all these changes, the controller ensure the convergence of water levels to their
references.
Moreover, we can observe that the control inputs Q1 and Q2 are smooth, the
advantage and the chattering phenomenon is almost eliminated (Fig.5 and Fig.
6).
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Fig. 4. Liquid level in tank3

For given references we remark that water levels h2d and h3dreach their refer-
ences without overshooting. When we change the references we obtain the same
response. In order to test the robustness of our strategy with respect to parame-
ter uncertainties and disturbances, we varied the parameters c1 and c3 by closing
and opening a little bit the valves az1 and az2 and we introduce a permanent
leakage in the outflow pipes of tank 2 and tank 3 at t = 1500s. We can see fig 2
and fig 3 that, in spite of all these changes, the controller ensure the convergence
of water levels to their references.
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Fig. 5. The control input Q1
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Fig. 6. The control input Q2

Moreover, we can observe that the control inputs Q1 and Q2 are smooth, the
advantage and the chattering phenomenon is almost eliminated (Fig.5 and Fig.
6).

6 Conclusion

In this paper, a new second order sliding mode control for MIMO nonlinear
uncertain systems was proposed. This control has allowed the taking into account
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parameters uncertainties and disturbances. In order to prove the effectiveness
and the efficiency of our control on an actual process, we implemented it on the
bench of an interconnected three tanks system. Experimental results had shown
its robustness with respect to parameters uncertainties and disturbances.
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