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Abstract. This work describes a multimodel emulation of a nonlinear
system dynamics. Indeed, in the presence of a strong non-linearity, the
classical emulation strategy, based on a neural network, does not always
lead to a good closed loop performance. An uncoupled multimodel emula-
tor is proposed for the emulation of nonlinear systems. The effectiveness
of the proposed emulator is shown through a numerical simulation. The
obtained results are very satisfactory and show a very good precision
relatively to the case where the classical neural emulator is adopted.

Keywords: Multimodel Emulator, Uncoupled multimodel, Nonlinear Sys-
tem Control.

1 Introduction

Technological development is steadily increasing the complexity of systems. In-
deed, nonlinear models are widely used in engineering science applications to
describe the dynamic behaviour of real-world processes [3]. Due to their mathe-
matical complexity, the last models are not easily exploitable. To apply, in this
case, a control law that ensure consistent good performance, it is necessary to
further adjust the controller parameters on-line. Therefore various methods have
been proposed for adjusting the parameter values of some control systems [8].
However, this methods are usually based on algorithms that require a precise
knowledge of the process dynamics and which need to evaluate the output vari-
ation against the input one. But, this last evaluation is not often easy, especially
when the system has complex nonlinear dynamics. The design of an emulator
for the system dynamics is, therefore, very necessary [5, 17].
In this regard, classical control approaches proposed neural networks as a plant
emulator for solving the problem related to the determination of the process
dynamics [1, 2, 5, 17]. This approach previously proposed and developed by
the authors, has been implemented for decadal climate model simulations. It
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has proved to be efficient and successful for different applications. Moreover, for
systems with simple non-linearity, acceptable performances may be maintained
with neural emulator. However, under certain conditions, the neural emulator
can present a relative inability to ensure good performance in closed loop. In-
deed, in the presence of disturbances and when the plant presents a strong
nonlinearity, the use of this emulator, is not suitable and decrease considerably
the performances. To overcome this problem, we propose in this paper an uncou-
pled multimodel emulator. This emulator is obtained by using a model’s library
which result from an off-line identification procedure of nonlinear systems using
an uncoupled state multimodel approach [11, 13, 14].

The multimodel approach is an interesting alternative and a powerful tool for
modeling and controlling complex processes.
This approach is useful for industrial processes which are, often, nonlinear and/or
non stationary. The basic idea of this approach is the decomposition of the full
operation range of the process into a number of operating regimes. In each
operating regime, a simple local model is applied. There are various ways of con-
necting these local models in order to yield the global model. We can distinguish
two multimodel structures according the use of coupled or uncoupled states.
The coupled state structure is the more classically used in multimodel analysis
and synthesis [6, 7, 9, 10, 11, 16, 18, 19]. On the other hand, the identification
procedure based on the uncoupled state multimodel has been not much used [4,
13, 14].

In this paper, we propose a multimodel emulator based on the uncoupled mul-
timodel to emulate and control non linear processes. Firstly, we present the
classical neural emulator. An example of simulation is given thereafter to show
the limits of this emulator used in PID Self-Tuning control method. In a sec-
ond part, we propose a solution for these problems through the synthesis of a
multimodel emulator. In this part we give a description of the parametric estima-
tion procedure for uncoupled state multimodel. Then we develop the uncoupled
multimodel emulator. A simulation example is proposed, illustrating that the
proposed emulator is more precisely and presents good closed loop performances
by comparison with the neural emulator.

2 Classical Neural Emulator

Many researchers have considered the emulation problem, using neural network
[1, 2, 5, 15, 17]. In all of these studies the researchers have considered that mul-
tilayer back-propagation neural networks can be trained to emulate any compli-
cated dynamics.
To obtain the precise dynamics of a nonlinear process and to evaluate the deriva-
tive ∂y

∂u
, which represent the output variation against the input one, a mapping

neural network is trained online to emulate the process. This is done by back-
propagating Enet(k) between the process output y(k) and the network output
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ynet(k). The mapping of the process dynamics can be realized by a two-layer
back-propagation network with (n + m) input and one output. The structure
chosen for this network should be based on the order of the process. An nth

order SISO process, for example, can be approximated by the following linear
discrete equation:

ynet(k) = w(n+m+1)f(
n∑

i=1

wiy(k − i) +
m∑

j=1

wn+ju(k − j)− b1)− b2 (1)

with:
wi and wn+j (i = 1..n, j = 1..m) denote the weights associated to the input
layer.
wn+m+1 is the weight associated to the output layer.
b1 and b2 are the biases associated respectively to the input and the output
layer.
f is the activation function of hidden layer. To simplify the calculation, this
function is often chosen as the tangent sigmoidal nonlinearity.
If we set:

T1 =
n∑

i=1

wiy(k − i) +
m∑

j=1

wn+ju(k − j) (2)

and with reference to equation (1), the term ∂ynet
∂u

can be easily determined by:

∂ynet

∂u(k − 1)
= w(n+m+1)wn+1(1− t gsig2(T1 − b1)) (3)

In order to demonstrate the effectiveness of an emulator, we present in this pa-
per the PID Self-Tuning controller as a method for controlling nonlinear systems
which requires the emulation of the process dynamics and evaluates the deriva-
tive ∂y

∂u
[1, 2, 15, 17].

The structure of the control system using a neural emulator is shown in Figure
1. As shown in this figure, the PID self-tuning controller is implemented using
a single-layer network. It consist of a mapping neural network implemented in
parallel with the process and a PID controller in the forward path. For this
controller, the discrete-time control law can be expressed as follows:

u(k) = [wp wi wd]




e(k)
k∑

j=1

e(j)

e(k)− e(k − 1)




= WPIDEPID (4)

where WPID the vector of weights wp, wi and wd which represent, respectively,
the proportional, integral and derivative gains which should be adjusted. The
error signal e(k) is:

e(k) = yc(k)− y(k) (5)
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where yc(k) and y(k) are respectively the reference value and the process output
at time k.
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Fig. 1. The structure of control system.

To minimise the control system error by adjusting the gains of the controller,
here, gradient descent algorithm is used to minimise the cost function specified
as:

J =
1
2
(yc(k)− y(k))2 (6)

To update the weights of the network which representing the controller gains we
need to calculate the gradient term ∂J

∂WPID
which requires the evaluation of ∂y

∂u
[5, 17].

2.1 The effectiveness of the neural emulator

In order to verify the effectiveness of the neural emulator the following nonlinear
system is considered [12]:

y(k) =
y(k − 1)y(k − 2)y(k − 3)u(k − 2)(y(k − 3)− 1) + u(k − 1)

1 + y2(k − 2) + y2(k − 3)
(7)

Since this system is of third order, the input number to the mapping network
was selected to be five. The initial weights of the mapping network were random.
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However, the initial weights of the PID network were selected as:
wp(0) = 0.1; wi(0) = 0; wd(0) = 0

This is to prevent the initial control signal generated to be either too small to
actuate the process or too large to drive the system unstable. Learning rates used
for the mapping network and the control network were chosen to be lr = 0.001
and lrPID = 0.05 respectively.
Figures 2 and 3 show respectively the results of the process output and the
control signal. It can be seen that the closed loop performances, in this condition,
are good.
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Fig. 2. The evolutions of the desired and the real outputs (Classical Neural Emulator).
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Fig. 3. The control signal (Classical Neural Emulator).

2.2 Limits of the neural emulator

Under certain conditions, the neural emulator may have a relative inability to
provide good performance in closed loop. Indeed, the choice of a simple network
emulator formed by a single hidden layer and tangent sigmoidal as the activation
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function, thanks to its simple derivative, can not be always sufficient in the
presence of strong nonlinearities. Furthermore, by examining equation (3), it is
obvious that the accuracy of the emulation is closely linked to the initialization
and the convergence of the weights of the network emulator. Poor initialization,
a slow convergence of the weights (caused by a bad choice of learning rate for
example) and the presence of disturbances can lead to poor performance of the
control system.
To illustrate this problem, we consider the same system described by the equation
(7), using the same learning rate for both networks, the same initialization of
the controller gains. The initial weights of the mapping network were random.
Between k = 1600 and k = 1700, a disturbance was injected to the system.
Figure 4 illustrates the evolutions of the system output y(k) and of the reference
trajectory yc(k). In presence of this disturbance and with a bad initialization
of weights of the mapping network, this figure shows that the performances in
regulation and traking are considerably deteriorated.
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Fig. 4. The evolutions of the desired and the real outputs (Classical Neural Emulator).

Figures 5 and 6 show respectively the results of the control signal and the
tuning results of wp, wi and wd.
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Fig. 5. The control signal (Classical Neural Emulator).
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Fig. 6. Evolutions of proportional, integral and derivative gains (Classical Neural Em-
ulator).
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3 A Multimodel Emulator For Nonlinear System
Controls

3.1 Parametric estimation procedure of an uncoupled multimodel

In this section, the parameter estimation based on the uncoupled state multiple-
model approach is presented. The structure of the uncoupled multimodel is given
by:

xi(k + 1) = Aixi(k) + Biu(k) + Di

yi(k) = Cixi(k)
(8)

where xi(k) and yi(k) are, respectively, the state vector and the output for the
ith local model, u(k) is the control.
The multimodel output ym(k) is defined by:

ym(k) =
Nm∑

i=1

µi(ξ(k))yi(k) (9)

Nm is the number of local models.
The local model contribution depends on the weighting function µi(ξ(k)) that
can be obtain from normalized Gaussian function:

µi(ξ(k)) =
exp(− (ξ(k)−ci)

2

σ2 )
Nm∑
j=1

exp(− (ξ(k)−cj)2

σ2 )
(10)

ci is the centre of the ith weighting function and σ is the dispersion for all
weighting functions. Decision variable of weighting functions can depend on the
measurable state variables and/or input/output variables.
The parametric estimation is based on an iterative minimisation procedure of a
quadratic global criterion :

J1 =
1
2

NH∑

k=1

(ym(k)− y(k))2 (11)

with Levenberg-Marquardt’s algorithm:

θ(it + 1) = θ(it)−∆(it)(H(θ) + λ(it)I)−1G(θ) (12)

where NH is the number of training data, θ(it) is the vector of the multimodel
parameters at a particular iteration it, ∆ is the step size that minimise the
criterion in the direction of vector H−1G, λ is a scalar and I the identity matrix
of appropriate dimension, H(θ) is the Hessian matrix and G(θ) is the gradient
vector. The calculus of the gradient vector and the Hessian matrix is based on
the calculation of sensitivity functions of output multimodel with respect to local
models parameters [13, 14].
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3.2 The multimodel emulator structure

The resulting local models described by the parameters Ai, Bi, Di and Ci can be
implemented in parallel with the process in different control structure and acting
as a plant emulator. This multimodel emulator allows us to obtain the precise
dynamics of the process and to easilly calculate the derivative ∂y

∂u
independently

of the complexity of the nonlinear dynamics of the process.
The structure of the control system using the proposed emulator is shown in
Figure 7.
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Fig. 7. The structure of control system (multimodel emulator).

The outputs of the partial local models can be defined as follows:

xi(k + 1) = Aixi(k) + Biu(k) + Di

yi(k) = Cixi(k)
(13)

where u(k) is the control signal.
The overall output of the emulator is given by:

ym(k) =
Nm∑

i=1

µi(u(k))yi(k) (14)
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Using equations (13) and (14), the term ∂ym
∂u

replacing the term ∂y
∂u

can be
easily determined from the structure of the multimodel emulator as follows:

∂ym

∂u(k − 1)
=

Nm∑

i=1

µi(u(k))
∂yi

∂u(k − 1)
=

Nm∑

i=1

µi(u(k))CiBi (15)

4 Numerical Example

In order to show the considerable contribution in performances of the multimodel
emulator, we consider the same nonlinear process described by the equation (7).

4.1 Determination of a models’base

Here, the uncoupled multimodel structure is used. The identification of the mul-
timodel is realized with a global criterion. The input u(k) of the system is
formed by the concatenation of piecewise constant signals with variable am-
plitude (u(k) ∈ [−1, 1]). The multimodel comprises arbitrarily (Nm = 4) sub-
models. The weighting functions µi depend on the input signal (ξ(k) = u(k)),
the centers are: c1 = −1, c2 = −0.33, c3 = 0.33, c4 = 1 and the dispersion
σ = 0.4. A set of 1350 input/output data points is used to build the multimodel.
The signal used to validate the uncoupled state multimodel is given by:

{
u(k) = 0.7 sin( 2π

250k) 1 ≤ k ≤ 675
u(k) = 0.6 sin( 2π

250k) + 0.1 sin( 2π
250k) k > 675

The resulting local models are described by the following expressions:

* Matrice and vectors of state model M1

A1 =
[

0.2641 0.3447
−0.0656 0.5960

]
B1 =

[
0.2468
0.4988

]

C1 = [1 0]

* Matrice and vectors of state model M2

A2 =
[ −0.0148 −0.2535

0.2542 0.1197

]
B2 =

[
1.1009
0.6347

]

C2 = [1 0]

* Matrice and vectors of state model M3

A3 =
[ −0.1021 −0.0434

0.4000 0.8606

]
B3 =

[
0.8807
−0.2028

]

C3 = [1 0]
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* Matrice and vectors of state model M4

A4 =
[ −0.1987 0.0523

0.6000 −0.0297

]
B4 =

[
0.6794
0.3698

]

C4 = [1 0]

The weighting functions are given in Figure 8. The validation results are
given in Figure 9. This figure shows the evolutions of the real and the multimodel
outputs (y(k) and ym(k)). The simulation results confirm that the method of an
uncoupled multimodel identification offers a very satisfactory modeling precision.
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Fig. 8. The weighting functions.
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Fig. 9. Nonlinear system output and identified multiple-model output.

4.2 A Multimodel Emulator For PID Self-Tuning controller

The resulting local models is used now to emulate the dynamics of the considered
nonlinear system.
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Figure 10 and 11 present, respectively, the evolutions of the desired reference
trajectory yc(k) and the system output y(k) in the case of the neural emulator
and the multimodel emulator. These figures show that the results recorded in
the case of the strategy advanced in this work is far better compared to the
classical neural approach.
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Fig. 10. The evolutions of the desired and the real outputs (Classical Neural Emulator).
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Fig. 11. The evolutions of the desired and the real outputs (Proposed Multimodel
Emulator).

Figures 12 and 13 show, respectively, the control signal and the gains wp, wi

and wd.
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Fig. 12. The control signal (Proposed Multimodel Emulator).
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Fig. 13. Evolutions of proportional, integral and derivative (Proposed Multimodel Em-
ulator).
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5 Conclusion

In this paper, we have elaborated a multimodel emulator for nonlinear system
controls.
This emulator is obtained by using a model’s library which result from an off-line
identification procedure of nonlinear systems using an uncoupled state multi-
model approach. We also compared the performances of this proposed emulator
to the classical one based on a neural network. The simulation results show
clearly that the proposed multimodel emulator leads to a good closed loop per-
formances relatively to the case where classical neural emulator is applied.
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