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Abstract. An adaptive sliding mode controller is presented for a class of Single 
Input Single Output (SISO) nonlinear systems with external disturbance. The  
designed controller, resulting from the combination of the Classical Sliding 
Mode Control technique (CSMC), the Proportional Integral controller (PI) and 
the Proportional Derivative controller (PD), can reduce the chattering pheno-
menon and guarantee the asymptotic convergence to zero of tracking errors 
and the boundedness of all signals in the closed-loop system. The parameters of 
the proposed controller, the adaptive laws and the robust control term are de-
rived based on the Lyapunov stability analysis. Finally, an inverted pendulum 
system and two coupled tanks system are simulated to demonstrate the validity 
and the effectiveness of the suggested approach. 

Keywords: Adaptive Control, Sliding Mode Control, nonlinear Single Input 
Single Output (SISO) systems. 

1. Introduction 

In addition to external disturbances, many dynamical systems have nonlinearities and 
parametric disturbances. Therefore, the use of robust control is desirable.  
In recent years, several researchers have been interested to Sliding Mode Control 
(SMC), known as a robust control strategy for nonlinear systems [1]-[3].  
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Known for its simple structure, easy implementation and its robustness to external 
disturbances, the SMC has been a topic of great interest in control theory and 
represented a great potential for practical applications. However, it suffers from a 
main disadvantage: the chattering phenomenon, which is the high frequency oscilla-
tion of the controller output.  
To overcome this problem, several methods of chattering reduction have been re-
ported in literature such as in [4]-[8]. In [9], the boundary layers approach can reduce 
this phenomenon. This method consists in replacing the discontinuous switching 
action by a continuous saturation function. This approach is generally appropriate for 
low disturbances and it requires an approximation of the term of discontinuity. Fur-
thermore, in [10] an asymptotic observer can eliminate the chattering phenomenon. 
The application of such observer assumes that the unmodelled dynamics are com-
pletely unknown. To attain the same objective, another common method based on the 
high order SMC can be elaborated [11]. However, this method requires a complex 
calculation. Another way to solve this chattering problem is based on combining the 
SMC and intelligent controllers to approximate the switching control term such as in 
[12] and [13]. The free parameters of the adaptive fuzzy controller can be tuned on-
line based on the Lyapunov approach [14], [15]. In [16], [17] and [18], the authors 
proposed a method to eliminate the chattering phenomenon by using an adaptive 
Proportional Integral controller (PI controller) for a SISO nonlinear system. The mul-
ti-input multi-output (MIMO) nonlinear systems are investigated in [19] and [20]. 
In this paper, we tempt to reduce the chattering phenomenon and to ensure good 
tracking performances despite external disturbances. For this purpose, a Classical 
Sliding Mode is combined with an Adaptive Proportional Integral Controller as well 
as an Adaptive Proportional Derivative Controller. On the basis of the Lyapunov 
theory, we demonstrate that the proposed controller guarantees the convergence to 
zero of tracking errors and the boundedness of all signals in the closed-loop system. 
The remaining of the paper is organized as follows. The problem formulation is de-
scribed in Section 2. The classical sliding mode control is presented in Section 3. By 
combining the sliding mode with an adaptive proportional integral controller and an 
adaptive proportional derivative controller, an improved sliding mode controller and 
an adaptive sliding mode controller are designed to reduce the chattering phenomenon 
in Section 4 and 5. The simulation results of the inverted pendulum and the coupled 
tanks system are given, in Section 6, to show the effectiveness of the proposed control 
strategies. Finally, Section 7 gives a conclusion on the main works developed in this 
paper. 

2. Problem formulation 

Consider a class of nonlinear, Single Input Single Output (SISO), disturbed system: 

 

 
( )

1

( ) ( ) ( )nx f x g x u d t

y x

= + +
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
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                                     (1) 
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where x is the state vector, [ ] ( 1)

1 2 , , ,, , ,
Tn nT

n x x xx x x x −= ∈ℜ=   
 . 

u ∈ℜ , y ∈ℜ  and ( )d t are respectively the input, the output and the unknown external 
disturbance of the system. 

( )f x  and ( )g x are nonlinear functions.  
We consider the following assumptions: 

Assumption 1 ( )g x is assumed to be controllable ( ) 0g x ≠ , x∀ . 

Assumption 2 The external disturbance ( )d t  is bounded as ( )d t D≤ . 

Our objective is to develop a control low allowing the output of the system “y” to 
follow a given signal “yd” despite the external disturbances ( )d t . 

3. Classical sliding mode control 

In order to develop the classical sliding mode approach for the SISO system two steps 
are required: the choice of sliding surface and the calculation of the control law. 

3.1.   Sliding surface 

The sliding surface is defined by the following expression: 
( )

1

r
r j

r j
j

s eα −

−
=

= ∑  where ( 1) 1rα
−

= , j=1..p                                (2) 

The parameters ( 1) 0, ,rα α
−
  are chosen such that all roots of 

( 1) ( 2)

( 2) 1 0( ) r r

rh p p p pα α α− −

−
= + + + +  are in the left half plane. (Here p denotes the com-

plex Laplace transform variable).     
 r represents the relative degree of the system. In fact, the sliding variable has a rela-
tive degree equal to one compared to the control law. This implies that the control law 
appears explicitly in the derivative of the sliding surface.  
The tracking error is defined by:      

                                                    de y y= −                                                      (3) 

3.2. Control law 

The control law includes two terms: a continuous term known as the equivalent con-
trol ueq and a switching term known as the discontinuous control usw. 
The equivalent control is calculated for the derivative of the sliding surface is null and 
without external disturbances. 
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The time derivative of s can be obtained as: 

( ) ( ) ( 1)

( 2)
2

( )
n

n n i

d i
i

s x y eα −

−
=

= − +∑
                                    (4) 

Substituting (1) in (4), we obtain: 
( ) ( 1)

( 2)
2

( ) ( )
n

n i

d i
i

s f x g x u y eα −

−
=

= + − +∑                             (5) 

0s =  , we are getting:    

    1 ( ) ( 1)

( 2)
2

( ) ( )
n

n i

eq d i
i

u g x f x y eα− −

−
=

= − + + 
  

∑                          (6) 

The switching law is given by the following expression: 
[ ]1 ( ) ( ) , 0swu g x sign sη η−= − >                                   (7) 

sign is the signum function. 
Thus, the conventional sliding mode control law is given by: 

1 ( ) ( 1)

( 2)
2

( ) ( ) ( )
n

n i

d i
i

u g x f x y e sign sα η− −

−
=

= − + − − 
  

∑                (8) 

Theorem 1. Consider the class of SISO nonlinear systems (1), if the control law (8) is 
applied, then the proposed control scheme guarantees the following properties: 

(i) The signals of the closed-loop system are bounded; 
(ii) The tracking errors converge to zero. 

Proof: 
The Lyapunov function is chosen such as: 

21
( ) ( )

2
V x s x=                                           (9) 

Then, the time derivative of V is given by: 
V ss=                                                (10) 

According to (4), (8) and (10): 
1 ( ) ( 1) ( ) ( 1)

( 2) ( 2)
2 2

( ) ( ) ( ) ( ) ( )
n n

n i n i

d i d i
i i

V s f x g x g x f x y e sign s y eα η α− − −

− −
= =

= + − + − − − +   
     

∑ ∑   (11) 

Consequently, the time derivative of V is written: 
( ) 0V ssign s sη η= − = − <                                 (12) 

 
Using Barbalat's lemma [18], we can see that the sliding surface converges asymptot-
ically to zero in finite time despite the external disturbances. 
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4. Improved sliding mode control 

 
Based on the classical sliding mode, we noticed that the presence of the signum func-
tion in the term swu  leads to the chattering phenomenon which can excite the high 
frequency dynamics. In order to reduce this phenomenon and to achieve the control 
objective, we decided to substitute the term of discontinuity by an adaptive Propor-
tional Integral (PI) controller. The gains of the proposed controller are adjusted online 
according to the desired performances.  
The expression of PI, included in the control law, is written as follows: 

0

( )
t

PI p i t
u k s k s dτ τ= + ∫                                           (13) 

where pk and ik are the control gains adjusted online from an adaptive law. 

Remark. From (13), we notice that the proportional integral term depends on the 
sliding surface and consequently of all the dynamics of the tracking error. 
The adaptive PI term derived from (13) can be rewritten as: 

( ) ( )T

PIu s sρ ρρ θ θ= = Θ                                       (14) 

where ρθ is the adjustable parameters vector given by [ ] 
T

p ik kρθ = and 

0
( ) ( ) ( )

tT s s t s tΘ =  
 ∫ is the regressive vector. 

Let us define the following variables: 
Case1: 0s >  

( )
1

1 1
 1

* arg min(sup ), 0
s

s
ρ ρ

ρ
θ

ρ
θ ρ θ η η

∈ Ω ∈

= − >


                         (15) 

Where 
1ρ

Ω denotes the set of suitable bound on 
1ρ

θ  and sgn( )sη is the discontinuous 
term of the conventional sliding mode control. 

Remark.  In this approach, the idea is to approximate a discontinuous term by a 
continuous term, which leads to an approximation error given by the following ex-
pression:                                     

( )
1 1

*

PI s ρω ρ θ η= − +                                        (16) 
 

Case2: 0s <  

( )
2

2 2
 

2

* arg min(sup ), 0
s

s
ρ ρ

ρ
θ

ρθ ρ θ η η
∈ Ω ∈

= >+


                       (17) 

Where 
2ρ

Ω denotes the set of suitable bound on 
2ρ

θ . 
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( )
2 2

*

PI s ρω ρ θ η= − −                                          (18) 

We define: 
, 1, 2

iPI PIW iω= =                                             (19) 
The parameter approximation error: 

* , 1, 2
i

iρ ρ ρθ θ θ− ==                                          (20) 

 
To achieve the control objective, we need to establish a control law that forces the 
trajectories of system status to reach and remain on the sliding surface despite the 
presence of external disturbances. We suggest adding a term of robustness 1u in order 
to cancel the effect of the error of approximation. 

1
ˆ

PIu W=                                                  (21) 

ˆ
PIW  is the estimated of PIW  to be determined yet. 

The control law is written as follows: 

( )[ ]1

1 1( ) ( ) du g x f x y e s uρα ρ θ−= − + − − +                    (22) 

The parameter vector ρθ is adjusted online by the following adaptive laws: 

( )s sρ ρθ γ= − Θ                                               (23) 

ˆ
PI PIW sγ= −
                                                 (24) 

where 0ργ > and 0PIγ > are the adaptation gains. 
The main result of the improved sliding mode control proposed is summarized in the 
following theorem: 

Theorem 2. Consider the class of SISO nonlinear systems (1), if the control law (22) 
is applied, where the terms PIu and 1u are respectively given by (14) and (21). The 

parameters 
ρθ and ˆ

PIω  are respectively adjusted on-line by applying the adaptation 
laws (23) and (24), then the proposed control scheme guarantees the following prop-
erties:  

(i) The signals of the closed-loop system are bounded; 
(ii) The tracking errors converge to zero. 

Proof: 
Let us consider the following Lyapunov function: 

21 1 1
( )

2 2
T T

PI PI

PI

V s W Wρ ρ

ρ

θ θ
γ γ

= + +                              (25) 

We define                                            
ˆ

PI PI PIW W W= −                                               (26) 
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The time derivative of s is given by: 

1( ) ( )s f x g x u yd e dα= + − + +    

( )[ ]1

1 1( ) ( ) ( ) ( )s f x g x g x f x yd e s u dρα ρ θ−= + − + − − + +  

 
( ) 1s s u dρρ θ= − + +                                     (27) 

In this work, PIW  is assumed to be unknown. That is why they will be estimated on-
line by using suitable adaptive laws deduced from the stability analysis in the Lyapu-
nov sense. 
Knowing that: 

[ ]ˆ , 0 21PI PI PIW W W

ρ ρθ θ= −

= − =







 






                                      (28) 

The time derivative of V is given by: 
1 1

( )T T

PI PI

PI

V ss W Wρ ρ

ρ

θ θ
γ γ

= + + 

   

                               (29) 

By substituting (27), (28) in (29), we obtain: 

( ) 1

1 1 ˆ( ) ( )T T

PI PI

PI

V s s u d W Wρ ρ ρ

ρ

ρ θ θ θ
γ γ

= − + + − −


    

( ) ( ) ( )1

1 1 ˆ( )T T

PI PI

PI

V su s s s s s s W W sdρ ρ ρ ρ ρ

ρ

ρ θ ρ θ ρ θ θ θ
γ γ

∗ ∗= − + − − − +


    

 
( )1 1 ˆˆ( ) ( )T T

PI PI PI

PI

V s s s s s W W sdρ ρ ρ

ρ

θ θ ω ρ θ
γ γ

∗= Θ − + − − +
 
 
 



    

( )[ ]1 1 ˆˆ( ) ( ) ( )T T

PI PI PI PI

PI

V s s s sign s W W sdρ ρ

ρ

θ θ ω ω η
γ γ

= Θ − + − − − +
 
 
 



               (30) 

 
By substituting (23), (24) in (30), we get: 

( )V ssign s sdη≤ − +                                            (31) 

                                        0,   V s Dη η≤ − < ∀ >                                       (32) 
Using Barbalat's lemma [18], we can see that the sliding surface converges asymptot-
ically to zero in finite time despite the external disturbances. 

5. Adaptive sliding mode control 

To ensure the control robustness and to reduce the rapprochement phase to the sliding 
surface, we replaced, in the following section, the adaptive proportional integral con-
troller by an adaptive proportional derivative controller with an integral surface. In 
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fact, the derivative action, by compensating the inertia due to dead time, accelerates 
the response of the system and improves the stability of the closed loop by allowing 
fast oscillations due to the appearance of a disturbance or a sudden change of the 
reference signal. Thus, it ensures a faster convergence to the sliding surfaces. 
The integral sliding surface is defined by the following expression: 

1
( 1) ( )

1 0
2

( )
r tr r j

r j
j

s e e k e dα τ τ
−

− −

−
=

= + +∑ ∫                                (33) 

The parameters ( 2) 1, ,r kα
−


 
are chosen such that all roots of 

( 1) ( 2)

( 2) 1 1( ) r r

rh p p p p kα α− −

−
= + + + +  are in the left half plane. 

The behavior of the added proportional derivative term is similar to a proportional 
integral derivative without increasing the number of parameters to be adjusted com-
pared to the previous adaptive proportional integral term.  
Then, the expression of the proportional derivative term is written as follows: 

( ) ( )PD p d

d
u k s t k s t

dt
= +                                     (34) 

where pk and dk  are the control gains adjusted online from an adaptive law. 
The adaptive PD term derived from (34) can be rewritten as: 

( ) ( )T

PDu s sρ ρρ θ θ= = Θ                                  (35) 

where
ρθ is the adjustable parameters vector given by [ ] 

T

p dk kρθ = and 

( )
( ) ( ) T ds t
s s t

dt
Θ =  

  
is the regressive vector. 

Let us define the following variables: 
Case1: 0s >  

( )
1

1 1
 1

* arg min(sup ), 0
s

s
ρ ρ

ρ
θ

ρ
θ ρ θ η η

∈ Ω ∈

= − >


                         (36) 

Where 
1ρ

Ω denotes the set of suitable bound on 
1ρ

θ  and sgn( )sη is the discontinuous 
term of the conventional sliding mode control. 
The approximation error is given by the following expression:                                     

( )
1 1

*

PD s ρω ρ θ η= − +                                        (37) 
 

Case2: 0s <  

( )
2

2 2
 

2

* arg min(sup ), 0
s

s
ρ ρ

ρ
θ

ρθ ρ θ η η
∈ Ω ∈

= >+


                       (38) 

Where 
2ρ

Ω denotes the set of suitable bound on 
2ρ

θ . 

( )
2 2

*

PD s ρω ρ θ η= − −                                       (39) 
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We define: 
, 1, 2

iPD PDW iω= =                                             (40) 
The parameter approximation error: 

* , 1, 2
i

iρ ρ ρθ θ θ− ==                                          (41) 

Same as the previous improved control law, the robust control law can be written as 
follows:                   

 ( )[ ]1

1 1 1( ) ( ) du g x f x y e k e s uρα ρ θ−= − + − − − +                   (42) 

where                                                
( )

1

( )

ˆ

T

PD

s s

u W

ρ ρρ θ θ= Θ

=





                                       (43) 

where ˆ
PDW  is the estimated of PDW  to be determined yet. 

The parameter vector 
ρθ is adjusted online by the following adaptive laws: 

( )s sρ ρθ γ= − Θ

                                           
(44)

 
ˆ

PD PDW sγ= −                                             (45) 

where 0ργ > and 0PDγ >  are the adaptation gains. 
The main result of the robust adaptive sliding mode control proposed is summarized 
in the following theorem: 

Theorem 3.  Consider the class of SISO nonlinear systems (1), if the control law (42) 
is applied, where the terms PDu and 1u  are respectively given by (35) and (43). The 

parameters ρθ and ˆ
PDω  are respectively adjusted on-line by applying the adaptation 

laws (44) and (45), then the proposed control scheme guarantees the following prop-
erties:     (i) The signals of the closed-loop system are bounded;  

(ii) The tracking errors converge to zero. 

Proof: 
Let us consider the following Lyapunov function: 

21 1 1
( )

2 2
T T

PD PD

PD

V s W Wρ ρ

ρ

θ θ
γ γ

= + +                           (46) 

Let us define:                                         ˆ
PD PD PDW W W= −

                                        (47) 

In this work, PDW  is assumed to be unknown. That is why they will be estimated 
online by using suitable adaptive laws deduced from the stability analysis in the Lya-
punov sense. 
The time derivative of s is given by: 

1 1( ) ( )s f x g x u yd e k e dα= + − + + +    

( )[ ]1

1 1 1( ) ( ) ( ) ( )s f x g x g x f x yd e k e s u dρα ρ θ−= + − + − − + − + +    
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( ) 1s s u dρρ θ= − + +                                             (48) 
Knowing that:         

                   
[ ]ˆ , 0 21PD PD PDW W W

ρ ρθ θ= −

= − =







 




 

                                  (49) 

The time derivative of V is given by: 
1 1

( )T T

PD PD

PD

V ss W Wρ ρ

ρ

θ θ
γ γ

= + + 

   

                             (50) 

By substituting (48) and (49) in (50), we obtain: 

( ) 1

1 1 ˆ( ) ( )T T

PD PD

PD

V s s u d W Wρ ρ ρ

ρ

ρ θ θ θ
γ γ

= − + + − −


    

( ) ( ) ( )1

1 1 ˆ( )T T

PD PD

PD

V su s s s s s s W W sdρ ρ ρ ρ ρ

ρ

ρ θ ρ θ ρ θ θ θ
γ γ

∗ ∗= − + − − − +


    

( )1

1 1 ˆ( ) ( )T T T

PD PD

PD

V su s s s s W W sdρ ρ ρ ρ

ρ

θ ρ θ θ θ
γ γ

∗= + Θ − − − +


     

( )1 1 ˆˆ( ) ( )T T

PD PD PD

PD

V s s s s s W W sdρ ρ ρ

ρ

θ θ ω ρ θ
γ γ

∗= Θ − + − − +
 
 
 



    

( )[ ]1 1 ˆˆ( ) ( ) ( )T T

PD PD PD PD

PD

V s s s sign s W W sdρ ρ

ρ

θ θ ω ω η
γ γ

= Θ − + − − − +
 
 
 



         (51) 

                            
By substituting (44) and (45) in (51), we get:  

( )V ssign s sdη≤ − +  

( )V ssign s s Dη≤ − +  

  0,   V s Dη η≤ − < ∀ >                                          (52) 
Using Barbalat's lemma [18], we can see that the sliding surface converges asymptot-
ically to zero in finite time despite the external disturbances. 

6. Simulation results 

To illustrate the effectiveness of the proposed approaches, two systems are simulated: 
an inverted pendulum system and a two coupled tanks system. 

6.1 Inverted Pendulum 

Consider the inverted pendulum system shown in Fig. 1. 
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Fig.  1. Schematic of the inverted pendulum. 

The structure of this pendulum is described by the following dynamic equations:  

1 2

2

2 1 1 1
1

2 2 2

1 1

1

cos sin cos
sin

cos cos4 4

3 3

c c

c c

x x

mlx x x x
g x

m m m m
x u d

m x m x
l l

m m m m

y x

=

−
+

= + +

− −
+ +

=







           





         (53) 

where [ ] 2

1 2, Tx x x= ∈ℜ the state vector, x is the angular of the pendulum with re-
spect to the vertical line; 
u is the applied force to move the cart (the control signal); 
u ∈ℜ , y ∈ℜ  and ( )d t are respectively the input, the output and the unknown external 
disturbance of the system; 
g: the acceleration of gravity;  
l: the angular velocity of the pole with respect to the vertical axis; 
mc: the cart mass; 
m: the pole mass. 
The dynamic model of the system can be written in a compact form as: 

1

1

( ) ( )x f x g x u d

y x

= + +

=







                                     (54) 

where          

2

2 1 1
1

2

1

cos sin
sin

( )
cos4

3

c

c

mlx x x
g x

m m
f x

m x
l

m m

−

=

−
+

 
 
 

  and  

1

2

1

cos

( )
cos4

3

c

c

x

m m
g x

m x
l

m m

+
=

−
+

 
 
 

 

The control objective is to force the system output “y” to track the desired trajectory 
“yd”. The desired trajectory is given by: 

(sin( ) 0.3sin(3 ))
10dy t t
π

= +                               (55) 
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( )cos( ) 0.9 cos(3 )
10dd dy y t t
π

= = +                         (56) 

The parameter values of the inverted pendulum are presented in the following table:  

Table 1. Values of the parameters of the inverted pendulum 

mc 1.5kg 
M 0.2kg 
L 1m 
G 981 cm/s2 

The simulation results are shown in Figs2-7. The tracking curves of states (x1 and x2) 
and its reference signals (yd and ydd) are respectively displayed in Figs 2-3. Those 
curves prove the good performance of the proposed controller: The Adaptive Sliding 
Mode Controller (ASMC), in particularly the good tracking of the reference signals. 
The evolution of the control signal, given in Fig.5, reveals the reduction of the chat-
tering phenomenon comparing to the evolution of the control signal of the Classical 
Sliding Mode Control approach (CSMC) given in Fig.6. The evolution of the sliding 
surface (Fig.7) proves that the attractiveness of this surface is guaranteed. 
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Fig.  2. The trajectories of the state vector x1 and the reference signal yd 
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Fig.  3. The trajectories of the state vector x2 and the reference signal ydd 
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Fig.  4. Evolution of the tracking error. 
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Fig.  5. Evolution of the control signal u (ASMC). 
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Fig. 7. Evolution of the classic sliding surface s. 
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6.2 Two coupled tanks system 

In order to illustrate the previous concepts, let us consider a liquid level control of two 
tanks system shown in Fig. 8. 
 

 

 

 

 

Fig. 8. Schematic of the coupled tanks system. 

The hydraulic system with two tanks consists of two identical hold-up tanks coupled 
by an orifice. This orifice allows the liquid to flow into the second tank and hence out 
to a reservoir. The objective of the control is to adjust the inlet flow rate Q(t) so as to 
maintain the level in the second tank, h2(t) close to a desired set point level.  
Let us take:  

h1 (t) is the level in the first tank; 
h2 (t) is the level in the second tank; 
q1 (t) is the flow rate from tank 1 to tank 2; 
q2 (t) is the flow rate out of tank 2; 
g is the gravitational constant; 
C12 is the area of the coupling orifice; 
C2 is the area of the outlet orifice. 

 
Applying Torricelli's law, the general model of the coupled tanks system can be writ-
ten as follows: 

1
1

1
1 2

1
( )

1
( )

dh
q Q

dt C
dh

q q
dt C

= − +

= −







                                            (57) 

where           

                                  1 12 1 2 1 2

2 2 2

2 sgn( )

2

q c g h h h h

q c gh

= − −

=





                     (58) 

From (54), (55) can be written as: 
12

1 1 2 1 2

12 2
2 1 2 1 2 2

1
2 sgn( )

2 sgn( ) 2

c
h g h h h h Q

C C
c c

h g h h h h gh
C C

−
= − − +

−
= − − −











             (59) 
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At equilibrium, for constant liquid level set point, the derivatives must be zero: 
12

1 2 1 2 0

12 2
1 2 1 2 2

1
2 sgn( ) 0

2 sgn( ) 2 0

c
g h h h h Q

C C
c c

g h h h h gh
C C

−
− − + =

−
− − − =







              (60) 

where Q is the equilibrium inflow rate. The equilibrium inflow rate is always positive, 
for this reason 1 2( ) 0sign h h− ≥  and 1 2h h≥ . 

( )

( )

12
1 1 2

12 2
2 1 2 2

1
2

2 2

c
h g h h Q

C C
c c

h g h h gh
C C

−
= − +

−
= − −











                         (61) 

In order to apply the control law (39), we should rewrite the model (61) as (1). There-
fore we consider the following transformations: 

1 2 0z h= > , 2 1 2 0z h h= − > , 1

2

z
Z

z
=
 
  

, u Q= ,  2
1

2c g
a

C
= and 12

2

2c g
a

C
=  

The output of the coupled tanks system is taken to be the level of the second tank. 
Therefore, the dynamic model in (61) can be written as: 

1 1 1 2 2

2 1 1 2 2

1

1
2

z a z a z

z a z a z u
C

y z

= − +

= − +

=












                                  (62) 

The objective of the control scheme is to adjust the output 1 2( ) ( ) ( )y t z t h t= =  to a 

desired value H. It is easy to show using (62) that if 1( ) ( )y t z t=  is regulated to a 

desired value H, then 2 1 2( ) ( ) ( )z t h t h t= −  will be regulated to the value
2

1

2

2

a
H

a
. 

The dynamic model of the coupled tanks system is highly nonlinear. Therefore, we 
will define a transformation so that the dynamic model given in (62) can be trans-
formed into a form that facilitates the control design.  
We consider the following model:       

1 1

2 1 1 2 2

x z

x a z a z

=

= − +





                               (63) 

1

2

x
x

x
=
 
  

is the transformation of z, ( )x T z= . The inverse transformation 1 ( )z T x−=  

is such: 
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1 1

2

1 1 2

2
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z x

a x x
z

a

=

+
=




 
   

  

                                      (64) 

From (62) and (64), the dynamic model of the system can be written in a compact 
form as: 

1 2
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1

( ) ( )

x x

x f x g x u

y x

=

= +

=
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where 
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Taking into consideration the external disturbances, the system (65) can be rewritten: 
1 2

2

1

( ) ( )

x x

x f x g x u d

y x

=

= + +

=










                                   (66) 

Finally, the dynamic model of the system can be written in a compact form as: 
1

1

( ) ( )x f x g x u d

y x

= + +

=







                                   (67) 

The objective of the control is to adjust the output 1 2( ) ( ) ( )y t z t h t= =  to a desired 
value H defined by: 

[ [
[ [

for t 0     , 200 ,  H=4cm

for t 200 , 400 ,  H=6cm

∈

∈
                                    (68) 

The parameter values of the coupled tanks process are presented in the following 
table:  

Table 2. Values of the parameters of the coupled tanks [22] 

Area of the coupling orifice: C 208.2 cm2 
Area of the outlet orifice: c12 0.58 cm2 
Cross-section area of Tank 1 to Tank 2: c2 0.24 cm2 
Gravitational constant: g 981 cm/s2 

To obtain realistic results, the simulation is carried out using the following input: 
3 30 cm / 50 cm /s u s≤ ≤                                   (69) 

The simulation results are shown in Figs 9-11. We notice from the tracking curve 
Fig.9 and the tracking error curve Fig. 10 that the output follows the reference signal 
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H. The evolution of the sliding surface trajectory is shown in Fig. 11. We notice the 
convergence to zero of the system which proves that the attractiveness of the sliding 
surface is guaranteed. 
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Fig.  9.The trajectories of liquid level h2 and desired liquid level H. 
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Fig.  10.Evolution of the tracking error. 
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Fig.  11.Evolution of the classic sliding surface s. 

7. Conclusion 

In this paper, adaptive sliding mode controller is developed for a class of nonlinear 
single input single output disturbed systems.  
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In the first part, we proposed a solution to reduce the chattering phenomenon. In fact, 
an adaptive proportional integral controller is used to approximate the discontinuity 
term of the classical sliding mode control. In the second part, we proposed another 
solution to avoid the rapprochement phase of the sliding surface. This solution in-
cludes an adaptive proportional derivative controller and an integral surface. Finally, 
based on the Lyapunov stability approach, we demonstrate that the proposed adaptive 
sliding mode control scheme can guarantee the global stability and the robustness of 
the closed loop system with respect to disturbance. The simulation results of the in-
verted pendulum and the coupled tanks system have shown the effectiveness of the 
proposed control method and the good performances in comparison with other recent 
SMC methods proposed in the literature.  
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