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Abstract. An algebraic method for fast, on line estimation of unknown 
parameters and unmeasured observable states, using only inputs and outputs 
is applied to estimate the synchronous machine parameters and the 
asynchronous machine rotor flux. The entire purpose is to gather some input 
output information so that we can identify unknown parameters and states. 
The estimation process should not depend on any of the initial conditions and 
the real parameter values should be reached in a relatively short time interval 
in order to make possible its use in real time. Evaluation of the unmeasured 
rotor flux of an asynchronous machine is based on derivatives calculation and 
can be reliably achieved in a quite short amount of time.  
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1.  Introduction 

The theory of asymptotic observers for linear systems was started in the pioneering 
work of Kalman, Luenberger and many other important contributions. For an 
observable system, represented in state space, the state estimation problem is 
intimately related to the computation of time derivatives of the output signals, in a 
sufficient number [1]. 
The Parameter estimation method is mainly based on differential algebra and 
operational calculus [7], [9], [10].  
This paper includes two main parts, the first part is devoted to the estimation of the 
permanent magnet synchronous machine (PMSM) parameters such as the direct and 
quadrature stator inductance and the stator resistance. The required state variables 
for the estimation process are the direct and quadrature stator currents, the angular 
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speed and the stator voltages which can be obtained from on-line measures or from 
numerical simulation results. 
The second part is dedicated to use an algebraic method, of non-asymptotic nature, 
for the estimation of states using only first order time derivatives of the direct and 
quadrature currents.  
Such method, based on derivatives calculus, is applied to estimate the unmeasured 
rotor flux of an asynchronous machine. The required state variables for the state 
estimation process are mainly the stator currents and voltages which can be obtained 
from on-line measures or from numerical simulation results. 
Each of the two parts comprising this paper will include the state model 
representation of a given AC machine, the algebraic parametric or state estimation 
method to be applied and the corresponding simulation results and discussions. 

2.  Algebraic Parametric Estimation of PMSM’s Parameters 

2.1.  State Model of the PMSM  

A PMSM is basically an ordinary AC machine with windings distributed in the 
stator slots so that the flux created by the stator current is approximately sinusoidal. 
A PMSM can be thought as a synchronous machine with constant excitation current. 
The parameters to be estimated are the inductance components and the stator 
resistance. Of these parameters, the stator resistance is temperature dependent and 
thus could require on line estimation. Whereas, the inductances do not depend on the 
temperature and therefore off line estimation is sufficient. 
Consider the estimation of the direct inductance dL , the quadrature inductance qL  

and stator resistance sR  from the permanent magnet synchronous machine 
described by the following differential system accordingly to Park’s model [11]:  

d
d s d d r q q

q
q s q q r d d r r

div R i L L i
dt

di
v R i L L i

dt

ω

ω ω

⎧ = + −⎪⎪
⎨
⎪ = + + + Φ
⎪⎩

                                (1) 

Where dv , qv  are stator voltages, di , qi are the direct and quadrature currents 

respectively. dL , the direct inductance, qL , the quadrature inductance; sR  is the 

stator resistance, rω  is the angular speed and rΦ  is the rotor flux. 

The parameters values used in the synchronous machine are 1.78sR = Ω , 

0.0485qL H= , 0.0342dL H= , 1.7 .J kg m= , 0.9566r wbΦ = ,  

10p = . 
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The state variables di , qi and rω are obtained through classical resolution of 
differential system of the synchronous machine which operates under a conventional 
Field Oriented Control method for a speed reference equal to 140 rd/s  and a direct 

stator reference current 0dci = .  

Direct and quadrature currents di , qi  are given in Figure 1. The angular speed rω  
is shown in Figure 2. 
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          Fig. 1. Direct and quadrature currents                     Fig. 2: Angular speed 

2.2.  Parametric Estimation Method 

Aiming to find a good approximation of the parameters dL , qL and sR  we have 
attempted to apply an algebraic method recently presented in [3][7][10]. Such 
method is based on differential algebra introduced in control theory and operational 
calculus which is the most classical tool among control and mechanical engineers. 
 Firstly the state variables are supposed to satisfy the linear time varying differential 
system (1).  
Two attempts will be performed to estimate the PMSM parameters; the first case 
uses only the first equation of the algebraic differential system whereas the second 
case takes into account only the second equation of such system. 
Starting from the first case we have:  

      0 0 1. .d
d d r q

di
A i B v B i

dt
ω= + +                                    (2) 

Where   

0 52.0468s

d

R
A

L
−

= = − ; 0
1 29.2398
d

B
L

= = ; 1 1.4118q

d

L
B

L
= =  
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The equation (2) includes a nonlinear term r qiω , therefore it is not possible to use 
operational calculus. It is necessary to linearize this equation or to have an 
‘equivalent’ linear equation. We have introduced a new state variable obtained from 
the direct product of the angular speed and the quadrature current defined as: 

          q r qx iω=                                                           (3) 

Thus equation (2) is rewritten as: 

                    0 0 1. .d
d d q

di
A i B v B x

dt
= + +                                                       (4) 

Translated into the operational domain it becomes: 

           0 0 0 1  d d d d qsI i A I BV B X− = + +                                    (5) 

‘s’ being the Laplace variable. 

dI  , qI  and dV  are the Laplace transforms of di , qi  and dv  respectively. 0A , 

0B  and 1B  are the system parameters to be estimated and 0di is the initial direct 
current value. The latter being unknown, we start by eliminating it. For that one 
should differentiate the members from the equation (5) with respect to s , we then 
obtain:  

                 
(1) (1) (1) (1)

0 0 1d d d d qsI I A I B V B X+ = + +                              (6) 

In order to determine the unknown parameters 0 0,A B  and 1B , the equation (6) 
should be differentiated as many times as the unknown parameters number, in this 
case three times.  
The resulting differential system is:  

           ( )( ) ( ) ( ) ( )
0 0 1

i i i i
d d d qsI A I B V B X= + + ,  1,2,3i =                             (7) 

Where the exhibitor ( )i  indicates the derivation order wrt to s .  
It is worth noting that the original equation corresponding to 0i = , does not form 
part of the system because it includes unknown initial conditions that should be 
avoid by differentiating once.  
A multiplication by s  means a derivation wrt t . Obviously a derivation is not a 
numerically robust operation, therefore one can divide the system of equations (7) 
by a factor sγ , where γ  is a constant integer higher than 2 in order to abolish all the 
derivative terms.   
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( )( ) ( 1) ( ) ( )

0 0 11

ii i i i
qd d d d XI I I V

i A B B
s s s s sγ γ γ γ γ

−

− + = + + ,  1,2,3i =                (8) 

Since the derivatives are eliminated the differential system includes only integral 
terms of the form:  

( )i
d

d ij j

I
I

s γ −

⎛ ⎞
= ⎜ ⎟
⎝ ⎠

, 
( )i

d
d ij j

V
V

s γ −

⎛ ⎞
= ⎜ ⎟
⎝ ⎠

 , 
( )i

q
q ij j

x
X

s γ −

⎛ ⎞
= ⎜ ⎟⎜ ⎟
⎝ ⎠

 ;  0,1,2,3i = , 0,1j = . 

Their corresponding quantities in time domain are d ijI , d ijV  and qijX  respectively 
and can be written as: 

                 1

0

( 1)( ) ( ) ( )
( 1)!

ti
j i

d ij di t t i d
j

γτ τ τ τ
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− −−
= −

− − ∫                     (9) 

                  1

0

( 1)( ) ( ) ( )
( 1)!
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qij qx t t x d
j

γτ τ τ τ
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− −−
= −

− − ∫                           (10) 

                    1

0

( 1)( ) ( ) ( )
( 1)!

ti
j i

d ij dv t t v d
j

γτ τ τ τ
γ

− −−
= −

− − ∫                         (11) 

                                      
Then, we have to solve the following algebraic system of three equations and three 

unknown estimated parameters 0 0,A B
∧ ∧

 and 1B
∧

: 

    

1

1

1

d 00 d 11 0 d 10 0 d 10 q10

d10 d21 0 d 20 0 d 20 q20

d20 d31 0 d 30 0 d 30 q30

i + i = A i + B v + B x

2i + i = A i + B v + B x

3i + i = A i + B v + B x

∧ ∧ ∧

∧ ∧ ∧

∧ ∧ ∧

⎧
⎪
⎪
⎨
⎪
⎪
⎩

                    (12) 

2.3. Simulation Results 

The algebraic linear system (12) can be written as: 

          .P QΘ =                                                           (13) 
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Where  
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The parameters  Θ  are said to be linearly identifiable with respect to x if, and only 
if [5][6]: 

• 
0

,
( )[ ]

, (1, ), , 1,...,i j j d
k s

ds

P Q span y i j r∈ =   and 

• det( ) 0P ≠  

0 ( )[ ]
(1, )dk s

ds

span y  is the set of all linear combinations of  (1, )y  where the 

coefficients are differential operators with respect to s  and { }, ,d d qy i v x∈ .  

If these conditions are satisfied, we obtained the estimates of system parameters by 
solving equation (13).  
The numerical simulation results presented here are run with the obtained data of the 
direct and quadrature currents, di , qi and the angular speed rω . 

The traces of the temporal evolution of the estimated parameters 0A
∧

, 0B
∧

 and 1B
∧

, 
which are linearly identifiables, are given in figure 3.a.  Such parameters are closes 
to their real values. the PMSM’s parameters dL , qL and sR   cannot be obtained 
directly from the algebraic system  (13), thus its are said to be weakly linearly 
identifiables.  These estimated parameters converge perfectly to their real values. 
according to figures 3b-c-d.  
The estimation results are recapitulated in table 1. 

Table 1: parametric estimation results:1st case 

 A0 B0 B1 
dL  qL  sR  

Real values -52.0468 29.2398 1.4118 0.0342 0.0485 1.78 
Estimated values -52.103 29.1363 1.4131 0.0343 0.0484 1.787 

From figure 3.a, it is shown that at 20 mst = , the system parameters have already 
reached real values or very close to them.  
Thus a short integration interval is seemingly enough to have a good parameter 
estimation so that the results can be used in real time. It is possible by means of such 
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method to perform online parameter estimation that can be suitable for some control 
problems.  
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         Fig.3a. Parameter estimation: 1st case                       Fig.3b.  Estimation of Ld 
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Fig.3c.  Estimation of Lq                                     Fig.3d.  Estimation of Rs 
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Fig. 4.  Parameter estimation: 2nd  case 

For different angular speeds, the estimation method gives fitting results, some 
numerical simulations were run for a low angular speed namely 20rd/s, the obtained 
real parameters values are likewise closes to their estimates ones.  
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The second equation of the differential system equations (1) is rewritten as: 

             
1 ( )q d s

r d q q r r
q q q

di L R
i i v

dt L L L
ω ω= − − + − Φ     (14) 

Such equation includes a non linear term r diω , assuming that d r dx iω=  and 

q q r rx v ω= − Φ  are the new state variables to be introduced in equation (14) 

which yields a linear differential equation in variables , ,d d qi x x : 

                              
1q d s

d q q
q q q

di L R
x i x

dt L L L
= − − +     (15) 

Generating a linear algebraic system of three equations devoid of any initial 
conditions and solving it as in the former case, the principal goal is to seek for a 
good approximation of the new linear identifiable parameters: 

0 0.7051d

q

L
A

L
−

= = − ; 0 36.701s

q

R
B

L
−

= = − ; 1
1 20.6185

q

B
L

= =  

The estimated parameters converge to their real values as shown in figure 4 and 

reads as : 0 0.7102A
∧

= − ; 0 37.0831B
∧

= −  and 1 20.9395B
∧

= .   

Finally, the PMSM’s parameters dL , qL and sR  , which are weakly linearly 

identifiable, are deduced from 0A
∧

, 0B
∧

 and 1B
∧

.The estimation results are 
summarized in table 2. 

Table 2: parametric estimation results: 2nd case 

 A0 B0 B1 
dL  qL  sR  

Real values -0.7051 -36.701 20.6185 0.0342 0.0485 1.78 
Estimated values -0.7102 -37.0831 20.9395 0.0339 0.0477 1.768 

3. Algebraic State Estimation in an Asynchronous Machine 

 3.1. State Model of Asynchronous Machine 

Mathematical models are of fundamental importance in understanding any physical 
system. In the fixed ( ),α β  reference frame linked to the stator, by choosing the 
stator current components and rotor flux components, the Concordia model is used 
to describe the dynamics of state variables and angular speed controlled by stator 
voltage [11]. 
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( )dx Ax Bu F x
dt

= + +                                               (16) 

      Where  ( )Ts s r rx i iα β α βϕ ϕ=     and        
T

s su v vα β⎡ ⎤= ⎣ ⎦                    
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with            
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3 4
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;

.
.; ;

. . . . .
1; ;

MR s R r
ra
s

M M ra a
s r T r s r

Ma a a r
T r T r

σ
ω

σ σ

ω

⎧ +⎪
=⎪

⎪
⎪ = =⎨
⎪
⎪ = = − = −⎪
⎪
⎩

 

si α , si β  being the stator currents; rαϕ , rβϕ  , the rotor flux components. 
 The computation of differential equation (16) leads to obtain the state variables 
waveforms in the temporal domain. For instance, for a starting asynchronous 
machine supplied via a sinusoidal voltage, the stator current components si α , si β  
are shown in figure 5, and those of the rotor flux are given in figure 6. The angular 
speed trace is given in figure 7. 
For the state estimation section, only stator currents si α , si β  and stator voltages 

sv α , sv β  will be used for the approximate rotor flux estimation whereas the 
obtained rotor flux will stand for reference signals to which will be compared their 
corresponding estimates. 
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           Fig. 5. Stator currents waveforms                       Fig. 6. Rotor flux waveforms 
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Fig. 7.  Angular speed 

3.2. State Estimation Method 

The state estimation is mainly based on the output derivatives calculation. In former 
studies an important mathematic background is established in order to estimate 
derivatives of first or upper orders [1][2][4][8]. 
First of all, consider an unspecified signal ( )x t  having the following convergent 
Taylor expansion: 

           
0

( )
!

i

ii

tx t c
i≥

= ∑  , with  0t = , ic ∈                                    (17) 

The truncated Taylor expansion given as: 

                            
0

( )
!

i
N

N ii

tx t c
i=

= ∑   , N positive integer                     (18)            

satisfies the differential equation: 

                      
1

1 ( ) 0
N

NN

d x t
dt

+

+ =                               (19)          

Translated in the operational field  it yields: 

     1 1 (1) ( )( ) (0) (0) ... (0)  N N N N
N N N Ns X s s x s x x+ −= + + +                              (20)          

Where ( )NX s  is the Laplace transform of ( )Nx t  .                                                      

The derivatives at initial time ( )
0( )

i
i

N N ti
dx x t
dt

∆

==  are thus obtained starting from 

the following system of linear equations:  

{ } { }( 1) 1(0) ... (0) (0)  
m m

N N N N
N N N Nm m

d ds x s x s x s s X
ds ds

ν ν− − − ++ + + =      (21)                           

0,..., , 1m N Nν= ≥ + . This system being triangular with diagonal elements not 

no one, the parameters ( ) (0), 0,..., ,i
Nx i N=  therefore the coefficients 0,..., Na a  

are linearly identifiable. 
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Aiming to solve (6) in time domain we replace the terms of equation system 
expressed in operational domain by their analogues in time domain. For instance, 

, 1,k

c k c
s

≥ ∈  corresponds to 
1

, 0
( 1)!

ktc t
k

−

≥
−

 in time domain and 

1 n

k n

d x
s ds

 to the reiterated integral of order k . 

( ) ( ) ( )
( ) ( ) ( )1 1 1

1 10 0 0 0

1
1  

1 !
k

n
t t t tn kn n

kx dt dt d t x d
k

τ τ τ τ τ τ τ− −
−

−
− = −

−∫ ∫ ∫ ∫… …          (22) 

Using the linear system (21), the derivatives of order n=1,..,N  a original time, can 
be computed simultaneously. Nevertheless, the matrix derived from such linear 
system of 1N +  equations is in general ill-conditioned, and yields therefore poor 
estimates.  
Aiming to overcome this problem we opt to use an independent estimator for each 
order of derivation [8]. 
For instance, in order to determine the nth order derivative one should annihilate the 
remaining coefficients ( ) (0)j

Nx , j n≠  by multiplying (21) by a linear differential 
operators of the form: 

, 1. . 0
n k N n

N n
k n k N n

d d k
sds ds

+ −

+ −Π = ≥                                (23) 

Such operator leads to the following estimator of ( ) (0)nx  :      

    
( )

, 1
1

(0) ( 1) 1 ( )
( )!( )!

n n k
N n NN
kn k

x
s X

n k N ns sν ν

+
+

+ + +

−
= Π

+ −
                      (24) 

 ν  has the form 1Nν µ= + + , 0µ ≥  

In this paper we need only first order derivatives so  we have the following 
calculation formulae: 
Taking 1N = , so 2ν µ= +  we have in operational domain : 

1 ( 1) ( )
(1)
04 1 2

1 ( 1)( , ) ( ( 1) )
( 1)!

k k k

k

x xx k k
ks s sµ µ µµ

+ +

+ + + +

−
= + +

+
                  (25) 

 
Translated in time domain we have:  

        
1

(1)
0

0

32( , ) ( ) (1 ) ( )
1

kk
x k p x T d

kT
µµµµ τ τ τ τ τ

+ +⎛ ⎞+
= −⎜ ⎟+⎝ ⎠

∫            (26) 

Where : 
( ) ( 2) ( 1)p k kτ µ τ= + + − + , and T  is the estimation time. 
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3.3.  Rotor Flux Estimation of an Asynchronous Machine 

From differential system (16) we focus our interest only on the two first equations 
which include the first derivatives of the stator currents components si α , si β : 

              
1 3 4 1

1 4 3 1

s
s r r s

s
s r r s

di a i a a b v
dt

di a i a a b v
dt

α
α α β α

β
β α β β

ϕ ϕ

ϕ ϕ

⎧
⎪

= + + +⎪⎪
⎨
⎪
⎪ = − + +
⎪⎩

                   (27) 

            

where 1
1

s

b
σ

=  

The stator currents si α , si β   and the stator voltages sv α , sv β  are supposed to be 
known either from on line measures or from numerical simulation results.  
The current derivatives are accordingly estimated at any time of interval estimation 
by means of equation (26). Therefore we obtain an algebraic linear system with two 
equations and two unknown variables such as the rotor flux components rαϕ , rβϕ . 

                 

3 4 1 1

4 3 1 1

s
r r s s

s
r r s s
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                          (28) 

 
Thus, for 2 2

3 4 0a a+ ≠ , the system solutions are expressed as: 
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   (29)
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The used computer variables X3,X4,X3e and X4e correspond to real and estimated 
rotor flux rdϕ , rqϕ , rd eϕ  and rqeϕ  respectively. 

It is obvious to remark from equation (26), that the rotor flux estimation depends on 
the integers k, parametrizing the differential operator nN

k
,Π  and µ characterizing the 

derivative elimination stage. 

For different values combinations of { } { }( , ) 0,1, 2 0,1, 2k µ ∈ ×  the real rotor 
flux and their estimates are given in figures 8 a-p.  
A state estimation method based on an independent estimator leads to acceptable 
results for certain couples of values of (k,µ)  namely for   (k,µ)=(1,0), (1,1)  (see 
figures 8.d, 8.i), one has the least delay between the real and the estimated state 
variables .  
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           (a)       0 ; 0k µ= =           (b)       0 ; 1k µ= =  
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          (c)       0 ; 2k µ= =           (d)       1 ; 0k µ= =  

(continued) 
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        (e)       1 ; 1k µ= =                             (f)      1 ; 2k µ= =  
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        (g)      2 ; 0k µ= =           (h)       2 ; 1k µ= =   
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(i)     2 ; 2k µ= =  

         Fig. 8.   State estimation of asynchronous machine rotor flux for 

     different values combinations of { } { }( , ) 0,1, 2 0,1, 2k µ ∈ ×  



Fast Algebraic State and Parametric Estimation - H. Khammari et al.  546 

For these cases real and estimated rotor flux values are very closes to each other. 
Using the state estimation method we have to choose adequately the values of 
( , )k µ  in order to obtain the unmeasured state variables estimate with satisfactory 
accuracy. 
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Fig. 9. Rotor flux estimation with anticipate adjustment  

 
If the delay between the real state variable and its estimate as well as their 
amplitudes ratio are known with certainty, one could apply an anticipate correction 
and have the real signals and their estimates superimposed as in figure 9.  

4.  Conclusion  

The parameter estimation method has the advantage of being completely 
independent of the initial conditions and it only requires the measurements of the 
input and output variables.  This estimation process is so fast that it allows on line 
implementation for certain control problems.  
The technique of fast algebraic state estimation based on derivative calculation 
applied to evaluate the unmeasured rotor flux of an asynchronous machine permits 
to obtain satisfactory results. The estimation results lead to highlight the importance 
of the individual estimator and the fast convergence of the estimated variables to 
their original ones. 
Such algebraic method for approximate state estimation in the control of a real life 
linear can be reliable to evaluate some unattainable variables through the knowledge 
of the accessible output variables. 
The algebraic treatment of many problems in AC machines control as well as 
problems in other fields pave the way to set up computationally implementable 
schemes, or algorithms characterized by fast computations. 
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