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Résumé—In this paper we apply an identification method for
a subspace system. Also we present a bounded-error approach.
This approach use the iso-level curves to describe the uncertainty
domain. To identify the system parameter, the least squares algo-
rithm is used. Especially the propagator method, is introduced.
To estimate the uncertainty domain, an error bounding approach
is considered.

Index Terms—Unertainty domain, MIMO, State-space, Propa-
gator method, Bounded error approach.

I. INTRODUCTION

CLassically in the framework of control, the objective
of estimation is to give a dynamic model of a system

for control law design [1], [2]. The model is near to real
system, it is necessary to set some conditions. The parameter
of controller must be adjusting taking into account the model
parameters uncertainty. To attend this objective, we pass
through two stages. The first is to estimate a model parameters
to understand the system function. The second consists in the
construction of the control law. To reach this goal, we must
be well-described the estimated model uncertainties.

To identify the uncertainty domain, many works are de-
veloped in this field. All this approach, have three different
axes. The first works are founded on prior hypothesis about
unmodeled dynamics and noise affecting the system [2]. Some
approach used time-domain to represent the system parameter
[3], [4] and take that the noise acting are random variables
realizations [1].These development was very limit specially in
case of robust control [5]. The second axe used to identify the
uncertainty domain [6], [7], is based on the idea that the noise
in unknown but bounded [8], [9], [10]. The problem related
to this method depend how we choose the bound.

The third axe is developed to solve this kind of problem.
A new approach is proposed [1], [11]. This approach is use
the analysis iso-level curves to estimate the bounded-error.
The Idea of this papers come from this technique. We use
the state-space representations and we develop this basic idea
into multi-input multi-output (MIMO). The propagator method
[12], [13], will be used to identify the system parameters. This
technique has some limit because it does not give access to
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all parameter of system but can estimate the smallest number
of system parameters, for both SISO or MIMO systems.

The silhouette of this paper is presented in four sections. In
Section II, we present the problem. The uncertainty domain
method is determined in Section III. Then in section IV we
introduce the propagator method. In Section V, we apply the
new technique in numerical simulations examples. Finally, we
concludes in section VI.

II. MAIN PROBLEM

Consider (A,B,C) as the system matrices for coordinate
state-space basis.
Defining the linear and time-invariant presentation

x(t+ 1) = Ax(t) +Bu(t) (1a)
y(t) = Cx(t) + v(t) (1b)

the input u(t) ∈ Rnu is an ergodic, the output y(t) ∈ Rny ,
v(t) ∈ Rny is the noise vectors and the state x(t) ∈ Rnx .
In this paper, the order of the system is considered to be
known a priori .
We make the following assumptions :

i) {v(t)} is uncorrelated with the input {u(t)},

ii) the matrix (A and B) are reachable.

iii) the matrix(A and C) are observable.

iv) for the sake of brevity, it is assumed that D = 0.

The model (1) is considered as output-error system [14].
Let as announce the problematic : knowing the input data

{u(t)}Nt=1 and output data {y(t)}Nt=1 generated by a system
(1), estimate the matrices (A,B,C) and characterize the
uncertainty domain of system parameters.

III. BOUNDED-ERROR METHOD

The identification of the coefficients ai, bji and cki , i ∈
[0, nx − 1], j ∈ [1, nu], k ∈ [2, ny] (the parameters of matrices
A, B and C) can be done by using the method based on
propagator.
To apply this technique, the parameters is represented via
linear representation. So, you will convert the state-space form
into a linear regression. Then we introduce the ellipsoidal iso-
level using a bounded- error method in [11]. To reach this
goal, the method developed in [11] is used.
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A. Model description

Consider the state-space system (1) and we suppose

i) the model (2) order is nx.

ii) the matrix A is non-derogatory.

(1) can be represented by

y(t) = −
(
a⊤ ⊗ Iny

)
ynx(t− nx)

+ Funx(t− nx) + η(t) = Φ⊤(t)θ + η(t) (2)

this model called an ARMAX model with

Φ⊤(t) = [−y(t−nx) ··· −y(t−1) unx (t−nx)⊗Iny ] (3)

θ =

[
a

vec(F)

]
(4)

a⊤ =
[
a0 a1 · · · anx−1

]
(5)

F =
(
a⊤ ⊗ Iny

)
Hnx

+C∆nx
∈ Rny×nxnu (6)

∆nx =
[
Anx−1B · · · AB B

]
∈ Rnx×nxnu (7)

and η(t) a noise corresponding to a filtered version of v.

When a model is SISO, we have this special case

x(t+ 1) =

 0 1 0
0 0 1

−a0 −a1 −a2

x(t) +

b10b11
b12

u(t) (8a)

y(t) =
[
1 0 0

]
x(t) (8b)

So, the model satisfies

y(t) = −a2y(t− 1)− a1y(t− 2)− a0y(t− 3)+ b10u(t− 1)

+
(
a2b

1
0 + b11

)
u(t− 2) +

(
a1b

1
0 + a2b

1
1 + b12

)
u(t− 3).

It is obvious that this model is non-linear in parameters ai,
bji and cki and linear in vector θ.

B. Description of uncertainty

We look for the minimum of the cost function [2,
Appendix II] to estimate the parameter vector and identify
the uncertainty domain of the parameters θi composing θ.
Consider θ̄ is an estimation of θ

J(θ̄) =
1

2

(
yM −ΨM θ̄

)⊤ (
yM −ΨM θ̄

)
with

yM =

 y(1)
...

y(M)

 ΨM =

 Φ⊤(1)
...

Φ⊤(M)

.
RΨ = Ψ⊤

MΨM is invertible, so that

J(θ̄) =
1

2
y⊤
M

(
I−ΨM

(
Ψ⊤

MΨM

)−1
Ψ⊤

M

)
yM

+
1

2

(
θ̄ − θls

)⊤
Ψ⊤

MΨM

(
θ̄ − θls

)
= Jmin +

1

2
dθ̄⊤RΨdθ̄ (9)

with θls =
(
Ψ⊤

MΨM

)−1
Ψ⊤

MyM and dθ̄ the variation of the
estimate θ̄ around θls. The unique minimum of the function
J(θ̄) is θls.

J(θ̂)

θ̂1θ̂2

θ̂m,2 θ̂m,1

FIGURE 1. Iso-criterion curve.

Fig. 1 is given in two dimensions by consider θ̂T =[
θ̂1 θ̂2

]
. This figure show that the only minimum of the

criteria J(θ̄) is θ the vector of estimated parameters. If we
consider V (θ̄) = J(θ̄)− Jmin, it is clear that

V (θ̄) =
1

2
dθ̄⊤RΨdθ̄ (10)

is a form of ellipsoid shape centered in θls whose directions
are specified by RΨ.

As we say before the goal of this paper is to calculate the
uncertainty domain such that the parameterθ is in D. Here,
D will have ellipsoidal shape which belong on a level JD of
user. Under the Gaussian case assumptions, it is clear that [2]

1

2
(θls − θ)

⊤
Ψ⊤

MΨM (θls − θ) = n2σ2

where σ2 is the variance of noise and n ∈ R+. This
resemblance give rise to choose the level JD as follows

JD − Jmin = n2σ2.

So, if we know σ2 the problem is solved and we can easily
get the uncertainty domain.

Jmin =
1

2
v⊤

(
I−ΨM

(
Ψ⊤

MΨM

)−1
Ψ⊤

M

)
v =

1

2
ε⊤ε

where ε = y − ŷ(θ̄) are the residuals. We consider ℓ as

ℓ = max {|ε(t)|} .

Let us introduce θss as the vector of parameters, i.e.

θss =
[
−a0 · · · −anx−1 b10 · · · bnu

0 b11 · · ·
bnu
nx−1 c20 · · · c

ny

0 c21 · · · c
ny

nx−1

]
.

We know that θss and θ can be related via a mapping f
known a priori (see Eq. (4)), i.e. θ = f(θss). Employing the
expansion of Taylor series, we can write

dθ ≈
(

∂f

∂θss

)
θss=θ̂ss

dθss
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where θ̂ss is the estimated parameters vector. Mixing this
equation with Eq. (9)

J ≈ Jmin + dθ⊤
ssRdθss

with

R =

(
∂f

∂θss

)⊤

θss=θ̂ss

RΨ

(
∂f

∂θss

)
θss=θ̂ss

.

C. Case study

The state-space form (8) is used to estimate the model.
Then,

θss =
[
−a0 −a1 −a2 b10 b11 b12

]
θ =

[
a0 a1 a2 a1b

1
0 + a2b

1
1 + b12 a2b

1
0 + b11 b10

]
.

Furthermore,

(
∂f

∂θss

)
=


−1 0 0 0 0 0
0 −1 0 0 0 0
0 0 −1 0 0 0
0 −b10 −b11 a1 a2 1
0 0 −b10 a2 1 0
0 0 0 1 0 0

 .

IV. IDENTIFICATION METHOD : THE PROPAGATOR

A. Main idea

The most interesting point of subspace-based identification
methods is the estimation of parameters can be done from I/O
data [15], [16], [17], [18], [19].
Most of the SMI algorithms are based on a three-step proce-
dure [14] :
i) concatenation of the I/O data into some over-parameterized
block data matrices according to some past and future hori-
zons,
ii) “compression” of the I/O information using orthogonal or
oblique projections (via RQ factorization) and selection of
particular subspaces,
iii) model reduction and order estimation using singular value
decomposition (SVD).
This identification procedure leads to minimal fully-
parametrized state-space realizations. In fact, the method ex-
plained hereafter avoids the use of the SVD and fixes the
state-space model basis during the observability subspace
estimation.

In this method it is important to estimation of the extended
observability matrix column space

Γf (A,C) = Γf =
[
C⊤ · · · (CAf−1)⊤

]⊤
f is an integer (f ≥ nx, user-defined ).
It is straightforward to take out the state-space matrices from
Γf . Let start by the following relation [14]

Yf (t) = ΓfX(t) +HfUf (t) +Vf (t) (11)

where Yf (t) and Vf (t) have the same structure as Uf (t).

X(t) =
[
x(t) · · · x(t+M − 1)

]
uf (t) =

[
u⊤(t) · · · u⊤(t+ f − 1)

]⊤
Uf (t) =

[
uf (t) · · · uf (t+M − 1)

]
M is defined in a way compatible with the full number of I/O
measurements N and Hf is a Toeplitz matrix.

B. Procedure of identification

1) MISO system : Considering a system with one output
and multi input. In this part we assume that Vf (t) = 0.
Applying an orthogonal projection to the equation (11), we
find

YfΠ
⊥
Uf

= ΓfXΠ⊥
Uf

(12)

The system is observable and Γf can be written as

Γf =

[
Γnx

Γc
nx

]
}Rnx×nx

}R(f−nx)×nx
(13)

From (13), it is clear that Γf is devided into two part : Γnx

which represent the first nx row of Γf and Γc
nx

which is the
rest of the matrix Γf .
Γnx

is square and non singular. We define the propagator P ∈
Rnx×ny−nx as

Γc
nx

= PΓnx . (14)

Using (12) it is clear that

YfΠ
⊥
Uf

=

[
Inx

P

]
ΓnxXΠ⊥

Uf
.

Now, introducing X̃ = TX with X̃ = TX is transformation
matrix

YfΠ
⊥
Uf

=

[
In
P

]
X̃Π⊥

Uf
. (15)

To estimate the propagator P, we introduce the matrix E

E = YfΠ
⊥
Uf

=

[
E1

E2

]
=

[
Inx

P

]
TXΠ⊥

Uf
. (16)

So P can be estimated by minimizing the criteria

∥E2 −PE1∥2F . (17)

The matrix Γf is written

Υf (2 : nx + 1, 1) =


cA
cA2

...
cAnx

 =


A(1, :)

A2(1, :)
...

Anx(1, :)

 =


0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
P(1, 1) P(1, 2) P(1, 3) · · · P(1, nx)

. (18)

we define

Anx = −anx−1Anx−1 − anx−2Anx−2 − · · · − a0Inx
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Applying the Caley Hamilton formula

cAnx =
[
P(1, 1) P(1, 2) · · · P(1, n)

]
= −anx−1cAnx−1 − anx−2cAnx−2 − · · · − a0c

= −anx−1Anx−1(1, :)− anx−2Anx−2(1, :)− · · · − a0c

=
[
−a0 −a1 · · · −anx−1

]
.

with
c =

[
1 0 · · · 0

]
. (19)

In similar way you can write

A2(1, :) = A(1, :)A = A(2, :)

A3(1, :) = A(1, :)A2 = A2(2, :) = A(2, :)A = A(3, :)

...

Anx−1(1, :) = · · · = A(nx − 1, :),

A is written

A =


0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
−a0 −a1 −a2 · · · −anx−1

 .

We know A and c, so the estimation of the matrix B is founded
by

B̂ = argmin
B

∑
t

[
y(t)− (

t−1∑
k=0

u(k)⊗ ĉÂ
t−k−1

)vec(B)

]
2) MIMO system : The first step of the propagator me-

thod is similar to the one applied in classic subspace-based
techniques, i.e. the compression of the I/O information. More
precisely, using an orthogonal projection of the output Yf into
the complement of input Uf , the forced response is removed
and the problem of the unknown matrix Hf is solved

YfΠ
⊥
Uf

= ΓfXΠ⊥
Uf

(20)

with Π⊥
Uf

= Inu
− U⊤

f (UfU
⊤
f )

−1Uf in order to find the
matrix Hf problem.

The next step is how to estimate the parameters of model.
The difficulty is the selection of these nx rows. More particu-
larly, it is based on the observation (see [20, Lemma 1] for a
proof).
The dynamics of system are consider from an auxiliary output
ya(t) =

∑ny

i=1 κiyi(t) where yi is the system output. When
κj , j ∈ [1, ny], are randomly choosed, we define a special
matrix K

K =


κ1 κ2 · · · κny

0 1 · · · 0
...

...
. . .

...
0 0 · · · 1

 ∈ Rny×ny

can be introduced to substitute. Then, using this transforma-
tion, Eq. (20) becomes

ȲfΠ
⊥
Uf

= Γ̄fXΠ⊥
Uf

(21)

with

Γ̄f = Γf

(
A, C̄

)
C̄ =


c̄1
c̄2
...

c̄ny

 =


∑ny

j=1 κjcj
c2
...

cny


where the rows of C are represented by cj , j ∈ [1, ny]. Γ̄f

has all column rank, a permutation matrix S (see [12] for its
construction) can be used to reorganize the rows of Γ̄f

SΓ̄f =


Γnx

(A, c̄1)
Γf−nx

(A, c̄1)A
nx+1

Γnx
(A, c2)
...

Γnx

(
A, cny

)

 =

[
Γnx

(A, c̄1)
Γc
nx

(A, c̄1)

]
.

By construction, rank{Γnx
(A, c̄1)} = nx. Hence,

Γnx
(A, c̄1) can be used as a similarity transformation

T. Thus a special matrix P ∈ Rnyf−nx×nx exists and called
the propagator [21] :

Γc
nx

= PΓnx
.

Eq. (21) becomes

SȲfΠ
⊥
Uf

= SΓ̄fXΠ⊥
Uf

=

[
Inx

P

]
Γnx

(A, c̄1)XΠ⊥
Uf

=

[
Inx

P

]
X̃Π⊥

Uf

with X̃ = TX. In case that the propagator can be estimated
from input and output signals, this relation proof that the
observability of the system subspace is presented in a special
basis . If the propagator P is known, we can write

Υf = S⊤
[
Inx

P

]
=


C
CA

...
CAf−1


with C = CT−1 and A = TAT−1. Now for the estimation
of P, we introduce the matrix Z as follows

Z = SȲfΠ
⊥
Uf

=

[
Z1

Z2

]
=

[
Inx

P

]
X̃Π⊥

Uf
.

Using all this assumptions, it is clear that a good estimate of
P can be got by calculate the minimum ∥Z2 −PZ1∥2F . Then,
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considering the Cayley Hamilton formula [15], we find that

A =

[
Inx

P

]
(2 : nx + 1, :) (22)

=


0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
−a0 −a1 −a2 · · · −anx−1

 (23)

c1 =
[
1 0 · · · 0

]
(24)

cj =

[
Inx

P

]
((j − 1)f + 1, :) for j ∈ [2, ny] . (25)

where aj , j ∈ [0, nx − 1], are the coefficients of the charac-
teristic polynomial of A. The matrix B can be calculated by
linear regression [14], if A and C are known. Thanks to this
method, the number of parameters is nx(nu + ny) [22]. This
is will make the estimation of uncertainty areas more easier.

V. SIMULATION EXAMPLE

The following state-space matrices are used

x1(t+ 1)
x2(t+ 1)
x3(t+ 1)

 = A

x1(t)
x2(t)
x3(t)

+B

[
u1(t)
u2(t)

]
[
y1(t)
y2(t)

]
= C

x1(t)
x2(t)
x3(t)

+ v(t)

with

A =

0.2 0 −1
1 0.3 5
−2 −0.4 −0.6

B =

1 0
0 2
1 −1

C =

[
5 0 1
−3 1 1

]
.

These matrices can be rewritten as

A =

 0 1 0
0 0 1
0.1 0.2 −0.1



B =

 7.3 0.2
−0.3 −6.9
−14.6 −2.0


C =

[
1.0 0 0
1.0 −0.3 0.6

]
.

A 1000 Monte Carlo realization is used.

The noise ratio equals 20dB. We choose PRBS=1000 for
the input signal.
For the identification of vector parameters we use the propa-
gator technique.

In first step you will plot the realistic uncertainty domains.
This domains are plotted for a number of points equal to 2×30.
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FIGURE 2. Uncertainty domain for 2× 30 points

Figure 3 present the parameter of system in red color (×),
the mean value in black color (+) and the estimated parameters
in blue color (∗) calculated in 1000 realizations of the Monte
Carlo.
to evaluate this method, we measure the failure rate. This
rate is in percentage which present the percentage of system
parameters outside of the ellipsoid domain.
The failure ratio equals 1.7 % for (−a0,−a1) and 2.4 % for
(−a2, b

1
0).

Failure ratio measures.
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Parameters (−a0,−a1) (−a2, b
1
0) (−a1, c

1
0)

Failure ratio 1.8 % 2.4 % 8.4 %

Table V introduce the failure rates for each case. this mesure
show how this method is reliable
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7.41

7.42

7.43

−a2

b
1 0

FIGURE 3. The cost function J(θ̄) presentation.

VI. CLOSURE

We represent a method to identify the uncertainty domain
by using the bounded-error approch. Two steps are used.
the first one is to identify the model parameter by using
the propagator method. This method is adequate for multi
input and multi output system which is represente in state-
space model. The second step is to quantify the uncertainty
domain. This domains are obtained by minimize an iso-criteria
to obtain an ellipsoid shape centred in estimated parameter.
The efficiency of the proposed method is show through an
experimental simulation. A failure rate is calculate to show
the performance of results.
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