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Abstract This paper focuses on the stabilization of two-dimensional discrete-
time systems described by Roesser models via static output-feedback control.
The existence of a static output-feedback control law is given by a new stability
condition. It is proved that the proposed condition is equivalent to classical Lya-
punov condition for stability analysis. Then, it is shown that the proposed con-
dition leads to a sufficient solution to build a stabilizing static output-feedback
controller which is less conservative than the Lyapunov-based condition. A de-
sign examples illustrate the applicability of the proposed approach.
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1 Introduction

Two-dimensional (2-D) systems have attracted the attention of many scholars in the past
years. Due to their effectiveness in describing systems in several modern engineering
fields (image data processing and transformation, water stream heating, thermal pro-
cesses, etc). The 2-D state-space theory was introduced by Roesser [3, 4]. Since then,
several other works have appeared [5], [6], [7] and so far the use of 2-D systems do not
cease to increase [12].

Based on these works, several properties concerning 2-D systems such as control-
lability, observability [4] and realization [9] have been investigated. This paper concen-
trates on stabilization of 2-D systems. In fact, the stability of 2-D systems using the
2-D Lyapunov equation has already been studied in [10,11], while the state and output-
feedback stabilization problem is treated in [13], by solving a set of 2-D polynomial
equations. Further, most of the available works in the literature of 2-D systems consider
only state-feedback stabilization [14,15], or dynamic output-feedback control [16–18].
However, state-feedback controllers require the measurement of every state, some of
which may be difficult to measure. On the other hand, dynamic output-feedback con-
trollers (which include systems with state observers) result in high order controllers
which may not be practical in real applications. Instead, the static output-feedback con-
trollers are less expensive to implement and more reliable so they will be studied in
this paper. In 2-D systems area, static output-feedback stabilization problem is not fully
? The first author would like to thank MCYT-CICYT for an FPI grant linked to research project
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investigated and still not completely solved, because the major difficulty of designing
stabilizing static output-feedback controllers is due to the non-convexity of the static
output-feedback solution set [19, 20].

Thus, in this paper the stabilization for 2-D discrete-time systems is considered.
The purpose is the design of static output-feedback controllers such that the resulting
closed-loop system is asymptotically stable. In particular, two stability conditions are
discussed, the second one is a new stability condition in which a slack variable is intro-
duced to add more degrees of freedom. It is shown that for analysis only both stability
conditions are equivalent. However, the second one leads to a sufficient solution in terms
of LMI to find a stabilizing controllers gain which is less conservative than the solution
based on first stability condition.

This paper is organized as follows: Section 2 presents a short description of discrete-
time 2-D system described by Roesser model, and the problem formulation. Section 3
is dedicated to the stability analysis. Section 4 is interested in finding static output-
feedback controllers using an LMI-based approach. Section 5 presents two examples to
show the applicability of the proposed approach.

2 Problem formulation and Preliminaries

The following discrete-time 2-D system in Roesser models [4] are considered through-
out the paper:





[
xh(i + 1, j)
xv(i, j + 1)

]
= A

[
xh(i, j)
xv(i, j)

]
+ Bu(i, j),

y(i, j) = C

[
xh(i, j)
xv(i, j)

]
,

(1)

where xh(i, j) ∈ Rn1 is the horizontal state vector, xv(i, j) ∈ Rn2 is the verti-
cal state vector, u(i, j) ∈ Rm is the input vector, y(i, j) ∈ Rl is the output vector;

A =
[

A11 A12

A21 A22

]
, B =

[
B1

B2

]
and C =

[
C1 C2

]
are constant matrices of appropriate

dimensions.
Consider the following unforced system:

[
xh(i + 1, j)
xv(i, j + 1)

]
= A

[
xh(i, j)
xv(i, j)

]
, (2)

this 2-D discrete-time system is asymptotically stable if and only if, its characteris-
tic polynomial C(z1, z2) has no zeros inside the closed unit bi-disc D2

= {(z1, z2) :
|z1| ≤ 1, |z2| ≤ 1}.

Hence, the stability of 2-D discrete-time systems can be determined by checking
the stability of the 2-D characteristic polynomial in the variables z1 and z2 [8,23]. This
appears to be difficult to use for control synthesis. In the literature, it has been shown
that the stability analysis using Lyapunov functions is still efficient to derive sufficient
conditions guaranteeing the asymptotic stability for 2-D discrete systems [7]. The well-
known Lyapunov inequality to test the stability of the 2-D discrete system in (2) is given
in the following condition [7].
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Lemma 1. [7] The 2-D discrete-time system (2) is asymptotically stable if there exists
matrices Ph > 0 and Pv > 0 satisfying the following LMI:

AT PA− P < 0, (3)

where P = diag(Ph, Pv).

Now, let us consider the 2-D discrete-time system (1) with the following static-output
controller

u(i, j) = Ky(i, j), (4)

where K is the controller gain to be determined, K ∈ Rm×l.
By applying this control law to the Roesser model described by (1), the following
closed-loop system is obtained:

(Σc) :
[

xh(i + 1, j)
xv(i, j + 1)

]
= (A + BKC)

[
xh(i, j)
xv(i, j)

]
. (5)

Then, the static output-feedback stabilization problem to be addressed in this paper can
be formulated as follows: given a 2-D discrete time system described by (1), determine
a static output-feedback controller in the form of (4) such that the resulting closed-loop
system (5) is asymptotically stable.

3 Stability analysis

In this section, the stability of the 2-D discrete time systems described by Roesser mod-
els is investigated using the Lyapunov theory. We recall the following Lemma which is
useful in this purpose.

Lemma 2. [22] Let Ψ , M and R be matrices of appropriate dimensions. Let NM

and NR be the orthogonal complements of M and R, respectively. Then, the following
propositions are equivalent:

i) Ψ + MXRT + RXT MT < 0,
ii) N T

MΨNM < 0, N T
R ΨNR < 0.

Now, consider the closed-loop system (Σc).
[

xh(i + 1, j)
xv(i, j + 1)

]
= Ac

[
xh(i, j)
xv(i, j)

]
, (6)

where Ac ≡ A + BKC.
By applying the stability condition for the unforced system (Lemma 1) to (6), the sta-
bility condition guaranteeing the asymptotic stability of the closed-loop system (6) can
be derived as follows.

Theorem 1. If there exist matrices P = diag(Ph, Pv) > 0 and K such that:

AT
c PAc − P < 0, (7)

where Ac ≡ A + BKC, then closed-loop system (6) is asymptotically stable.
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In the sequel a new sufficient stability condition which is equivalent to the one given
by Theorem 1 is provided using direct Lyapunov method and Lemma 2.

Theorem 2. Consider the 2-D discrete-time system (6). If there exist a block-diagonal
matrix Q = diag(Qh, Qv) > 0, Qh ∈ Rnh×nh , Qv ∈ Rnv×nv and matrices K, V
such that 


− 1

2 (V + V T ) V T AT
c

1
2V + V T −Q

AcV −Q −AcV
1
2V T + V −Q −V T AT

c −V − V T


 < 0, (8)

where Ac ≡ A + BKC, then the closed-loop system (6) is asymptotically stable.

Proof. Regarding the previous results, the asymptotic stability of closed-loop system
(6) is guaranteed by the condition (7) of Theorem 1. Then, it is sufficient to proof that
the conditions of Theorem 1 and Theorem 2 are equivalent. Thus, multiplying the right
and the left of condition (7) by P−1 and taking Q = P−1 in the resulting inequality,
we have to show the following equivalence:

QAT
c Q−1AcQ−Q < 0 ⇔



− 1

2 (V + V T ) V T AT
c

1
2V + V T −Q

AcV −Q −AcV
1
2V T + V −Q −V T AT

c −V − V T


 < 0. (9)

For this, let us start by rewriting inequality (8) as follows:



0 0 −Q
0 −Q 0
−Q 0 0


 +




1
2I
−Ac

−I


 V

[−I 0 I
]
+



−I
0
I


 V T

[
1
2I −AT

c −I
]

< 0. (10)

Next, respecting the notation in Lemma 2, let MT =
[

1
2I −AT

c −I
]
, RT =

[−I 0 I
]

and explicit the orthogonal complements of M and R (NM and NR respectively):

NM =




I 0
0 I
1
2I −AT

c


 , NR =




I 0
0 I
I 0


 . (11)

Applying Lemma 2, we obtain:

N T
MΨNM =

[
I 0 1

2I
0 I −Ac

] 


0 0 −Q
0 −Q 0
−Q 0 0







I 0
0 I
1
2I −AT

c




=
[ −Q QAT

c

AcQ −Q

]
,

and

N T
R ΨNR =

[
I 0 I
0 I 0

] 


0 0 −Q
0 −Q 0
−Q 0 0







I 0
0 I
I 0


 =

[−2Q 0
0 −Q

]
.

Now, assume that the condition in the left-hand of the equivalence (9) holds. Taking its

Schur complement we obtain:
[ −Q QAT

c

AcQ −Q

]
< 0. So, it is obvious to see that if the
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stability condition (7) in Theorem 1 holds, then by using Lemma 2 the condition (8) in
Theorem 2 holds.
Reciprocally, assume that (8) holds. Using again Lemma 2, and according to the above
discussion, it can be seen that (7) holds, completing the proof.

Remark 1. Note that the condition (7) can be recovered by imposing V = Q and let-
ting Q−1 = P in condition (8). However, it is shown that both the stability conditions
provided by Theorems 1 and 2 are equivalent, so they present the same level of conser-
vatism. As it will be seen in the next sections, the contribution of Theorem 2 in addition
to prove the equivalence with the condition (7) in Theorem 1, is to propose a condition
which is less conservative when the output-feedback control synthesis is considered.

4 LMI-based stabilization solution

This part is interested in finding static output-feedback controllers, such that the closed-
loop of 2-D discrete-time system is asymptotically stable. For this goal, it is proposed to
employ a direct procedure based on the change of variables technique, which has been
shown to be very efficient for solving related control problems (such as state-feedback
controllers).

Hence, the synthesis of static output-feedback controllers can be reduced, using
Theorems 1 and 2, to find P and K such that:

[
P (A + BKC)T P

P (A + BKC) P

]
> 0, (12)

or equivalently, to find V, K and Q such that:


− 1

2 (V + V T ) V T (A + BKC)T 1
2V + V T −Q

(A + BKC)V −Q −(A + BKC)V
1
2V T + V −Q −V T (A + BKC)T −V − V T


 < 0. (13)

It should be noted that in general the problem of solving numerically (12) for (K, P )
or (13) for (K,P, V ) is non-convex in general. This makes the output-feedback control
problem difficult to solve.
However, the introduction of a new slack variable G in (13), such that KCV = KGC
leads to a convex sufficient condition in terms of LMI as in the following Theorem:

Theorem 3. Consider the 2-D system (5); if there exist a block-diagonal matrix Q =
diag(Qh, Qv) > 0 with Qh ∈ Rn1×n1 and Qv ∈ Rn2×n2 , V , G and Y such that



− 1

2 (V + V T ) V T AT + CT Y T BT 1
2V + V T −Q

AV + BY C −Q −(AV + BY C)
1
2V T + V −Q −V T AT − CT Y T BT −V − V T


 < 0, (14)

G + GT > 0, (15)
CV = GC, (16)

then the control law u(i, j) = Ky(i, j), where K = Y G−1, stabilizes asymptotically
the closed-system (6).
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Remark 2. Note that in Theorem 3, the Lyapunov matrix Q = P−1 has to satisfy only
the stability condition, so there are more degree of freedoms. Moreover, the equality
constraint (16) is satisfied by the slack variable G.

Remark 3. Note that the invertibility of matrix G is guaranteed by the condition G +
GT > 0.

5 Numerical Examples

Two examples are now considered to show the applicability of the proposed approach.

5.1 First example:

Consider the following 2D Roesser model of the form 1:

A =




0.2156 0.4832 0.2301 0.5780 0.9791
0.4390 0.9834 0.0235 0.1234 0.4585
0.7395 0.7219 0.7538 0.9841 0.0737
0.0299 0.6821 0.8434 0.8563 0.0523
0.2393 0.6449 0.1974 0.4616 0.5539




, B =




0.2092 0.7572 0.7605
0.8062 0.0939 0.8473
0.5108 0.4564 0.5678
0.3766 0.0206 0.2455
0.0441 0.1583 0.7634




,

C =
[

0.2534 0.2092 0.6996 0.5146 0.3776
0.8883 0.9392 0.65 0.7429 0.5017

]
.

In this example, the open-loop system is unstable ( matrix A11 contains an eigenvalue
outside the unit circle given by 1.7). The purpose is to design a static output-feedback
controller such that the closed-loop system is asymptotically stable.
Using the proposed Theorem 3, a feasible solution can be obtained, such as the follow-
ing:

Q1 =




2365.3 72.7 −155
72.7 2264.4 −144.8
−155 144.8 2136.8


 , Q2 =

[
2560.9 108.4
108.4 2147.4

]
,

V =




1328.2 46.3 45.4 21.8 66.1
31.4 1.3554 −46.0 −35.7 −36.9
−161.7 −116.3 1194.1 −182.8 −47.2
−22.2 −85.8 −126 1349.4 15.9
63.4 28.5 184.8 78.4 1207.5




,

Y =




148.2 −672
−1778.6 0.4562
840.5 −1016.9


 , G =

[
1292.9 −95.8
−91 1286.3

]
.
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Then, the gain of a stabilizing static output-feedback controller is:

K = Y G−1 =




0.0782 −0.5166
−1.3578 0.2535
0.5976 −0.7461


 .

5.2 Second example

This example deals with stabilization processes in a Darboux equation (Marszalek,
1984) and is considered by many works treating 2-D systems [2]. The Darboux equation
corresponds to the following PDE:

∂2s(x, t)
∂x∂t

= a1
∂s(x, t)

∂t
+ a2

∂s(x, t)
∂x

+ a0s(x, t) + bf(x, t), (17)

where s(x, t) is an unknown function at space x∈ [0, xf ] and time t∈ [0,∞), a0, a1, a2

and b are real coefficients, and f(x, t) is the input function.
In [2] the partial differential equation (PDE) model (17) was converted into a 2-D
Roesser model of the form (1), where:

A =
[

1 0
0 1

]
+

[
∆x 0
0 ∆t

] [
a1 a1a2 + (a0 + 0.7δ)
1 a2

]
,

B =
[

∆x 0
0 ∆t

] [
b + 0.1δ
0

]
, and C =

[
1 10

]
.

Following [2], let a0 = 0.2, a1 = −3, a2 = −1, b = 0.3, δ = 0.03−1∆x = 0.1 and ∆t =
0.5, which gives an unstable open-loop system, see (Fig. 1(a)).
A feasible solution of the LMI of Theorem 3 gives:

Q1 = 987.8379; Q2 = 1019.4;V =
[

565.9338 −76.3366
1.8807 592.3742

]
;

Y = −424.8591; G = 584.7406.

Thus, the gain of a stabilizing controller is: K = Y G−1 = −0.7266.
Simulation result using this controller gain is shown in Fig. 1(b). It can be seen that the
closed-loop system is stabilized. The state response xv is similar, so it is omitted.

6 Conclusions

This paper has proposed a solution for the static output stabilization problem of 2-D
systems described by Roesser models. It has been shown that this solution can be recast
as a convex optimization under LMI form. The proposed approach is systematic for
controller design of 2-D systems. Examples are given to demonstrate the applicability
of the proposed methodology. This result can be extended to more complex systems
(system with uncertainties, H∞, etc) and can also open a new avenue in designing
controllers for 2-D systems.
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Figure1. (a) The open-loop response of xh, (b)The closed-loop response of xh.
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