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Abstract. Over the few last years the idea of introducing fractional calculus 
and systems in adaptive control has found a great interest, for the benefit one 
can win in the performances given by such systems. In adaptive control, the dy-
namic behavior of the system is defined by a chosen reference model and an 
adaptation algorithm modifies the correction to minimize the process output 
error. In this work, an adaptive control with a fractional order reference model 
is suggested. The main idea consists of making beforehand an approximation 
of the fractional reference model using one of the frequency domain approxi-
mation methods. After that, we use a classical algorithm of the adaptive control 
with the resulting reference model. Our objective is to find a control which 
takes the system to the desired state (the referential signal) with an improved 
behavior when compared to the integer order model scheme. The results of si-
mulation have confirmed the efficiency proposed fractional order reference 
model adaptive controller. 

Keywords. Fractional Adaptive Control, Fractional Control System, MRAC, 
Approximation Method. 

1.   Introduction 

Adaptive control with a reference model is part of a set of techniques to automatically 
adjust the control systems parameters when the characteristics of the process and dis-
turbances are unknown or time varying. The dynamic behavior of the system is de-
fined by the reference model and an adaptation algorithm modifies the correction to 
minimize the process model output error. 
       In principle, this type of control is nonlinear as it contains two loops nested 
against feedback: the correction loop and adaptation loop [1, 2]. There are several 
types of adaptive systems with reference model; these can be classified according to 
the structure as follows: MRAC parallel, MRAC series, and MRAC series–parallel.  
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The parallel structure (see Figure 1) is the most famous structure, called the method 
of the output error in the case of the identification [3-6].  

 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig .1. Parallel structure of adaptive control with fractional order reference model. 

 
Many scientific works have shown the importance of Fractional systems and their 
utility in mathematics, system modeling and control engineering [7-10]. Applications 
concern various aspects of physical sciences fields, as mechanics, electricity, chemi-
stry, biology, economics, modeling, time and frequency domain system identification 
and notably control theory, mechatronics and robotics [11]. The interest for the intro-
duction of these systems in adaptive control [3-5] has been first motivated by the very 
good proven performances of fractional systems relatively to those of integer order. 
In this work, an adaptive control with a fractional reference model is suggested.       
The main idea consists of making beforehand an approximation of the fractional refer-
ence model using one of the famous approximation methods (Oustaloup). After that, 
we use a classical algorithm of the adaptive control with the approximated referential 
model. 
This paper is structured as follows: Section 2 presents the model reference adaptive 
control (MRAC) problem. Section 3 is an introduction to fractional order systems and 
Oustaloup approximation method, and then two simulation examples are given in 
section 4. Finally, some concluding remarks are presented in Section 5. 
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2.   Description of MRAC 

2.1.   Follow-up Model 

Consider SISO system, which can be a represented by a continuous time or discrete-
time model: 

 )()( tu
A
Bty =                                                                                                 (1)                                      

Where u  is the control signal and y  is the output signal. The symbols A  and B  
denote polynomials in the differential operator p . It is assumed that the degree level 

)deg()deg( BA ≥ , the system is causal [1]. 
We assume that we are trying to find a regulator such that the relationship between 

the reference signal cu  and the desired signal output my , after having approximated 
the fractional reference model is given by: 

)()( tu
A
Bty c

m

m
m =                                                                            (2) 

 
Where mA  and mB  are polynomials in the differential operator p . The generally 

linear control law is described as: 
  ySuTuR c −=                                                                                             (3) 
With R , S  and T  are polynomials. This control law is against a negative feedback 

with the transfer operator RS /−   and a direct reaction with the transfer operator 
/−T R . 

 
 
 
 
 
 
 
 
 
 

Fig .2. Closed-loop system with a linear regulator. 
 

2.2.   MIT rule 

The gradient approach to MRAC is based on the assumption that the parameters 
change more slowly than the other variables in the system. This assumption, which 
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admits a quasi-stationary treatment, is essential for the computation of the sensitivity 
derivatives that are needed in the adaptation [12]. 
Let e  denote the error between the system output y , and the reference output my . Let 
θ  denote the parameters to be updated. By using the criterion 

2

2
1)( eJ =θ                                                                                         (4)                                      

the adjustment rule for changing the parameters in the direction of the negative gra-
dient of J J is that 

 θ
γ
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∂
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∂
∂
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eeJ

dt
d ..                                                                              (5)                              

If it is assumed that the parameters change much more slowly than the other variables 
in the system, the derivative ∂e/∂θ, i.e., the sensitivity derivative of the system, can be 
evaluated under the assumption that θ is constant [1]. 
There are many variants about the MIT rules for the parameter adjustment. For exam-
ple, the sign-sign algorithm is widely used in [13]; the PI-adjustment rule is used in 
[14].  
The control law is given by the following equation: 

)( 1ϕθ Pu T−=                                                                                                (6) 

3.   Oustaloup Approximation method 

The Oustaloup approximation method of a generalized derivator, a differential ac-
tion which covers the frequency space, is based on a recursive distribution of an infi-
nite number of zeros and negative real poles (to ensure a minimum phase behavior) 
[11,15-17]. As part of a realist synthesis (practice) based on a finite number of zeros 
and poles, it should reduce the differential behavior of a generalized bounded fre-
quency range, chosen according to the needs of the application.  

 
The method is based on the function approximation from: 
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By a rational function [3, 5]: 
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where the poles, zeros, and gain are evaluated from: 
γγγ ωωωωωωω h

NK
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ubK K === +−−− ,.,. /)12(/)12('  

uω is the unity frequencies gain and the central frequency of a band of frequencies 

distributed geometrically.  Let  bhu ωωω .=  , where hω and bω  are respectively the 
upper and lower frequencies. 
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γ is the order of derivative, and N is the order of the approximating function. 

4.   Examples 

4.1.   Example 1: (the reference model is of integer order) 

The system is described using the following equation: 

                                                                                                                             
                                                                   (8)                                 

The referential model is defined by: 

 
12.0
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+
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Let us assume that we want to minimize the error: 

myye −=                                                                                                         (10) 

The recurrence equation of the system described above which is obtained after the 
discretization  )04.0( =T is given by : 

k)0.07811.u(- 1)+0.09171u(k+1.127.y(k)-1)+2.131.y(k=2)+y(k  
The recurrence equation of the original model described above which is obtained after 
the discretization )04.0( =T is given by: 

(k)0.1813.u(k)0.8187.y1)(ky mmm +=+  
Let l k, and m be respectively the degree of the polynomials R, S and T, such that: 
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Therefore, the vector of regulation parameters is:   
),( 00 ts=θ  

Let us define the regression vector (or measurement vector) ϕ us follows: 
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The recurrence equation of  Tϕ after the discretization )04.0( =T is given by 

(k)]u 0.003412+1)+(ku 0.003696 
- y(k)0.003412+1)+ y(k[0.003696+(k) 0.7866-1)+(k 1.78=2)+(k 

cc

TTT ϕϕϕ  

The command law is given using the following equation: 
)( 1ϕθ Pu T−=                                                                                                (12) 

The real output of the system is shown in Fig. 3. 
 

 
Fig .3. The real output of the system y and the reference output ym 

 

The following figure (Fig. 4) shows us the error between the real output of the system 
and the real output of the original model. 

 
Fig .4. The error signal between y and ym 

From Figures Fig .3 and Fig .4, we remark that the output of the system follows the 
referential one and the small oscillations are caused by the sudden change of the refer-
ential signal.   
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4.1.   Example 2: (the reference model is of fractional order) 

The system is described using the following equation: 
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The fractional original model is given by: 
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The fractional original model approximated using the method of Oustaloup is: 
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The recurrence equation of the previous system obtained after the discretization 
)04.0( =T is given by: 

k)0.07811.u(- 1)+0.09171u(k+1.127.y(k)-1)+2.131.y(k=2)+y(k  
The recurrence equation of the original model described above after the discretization 
(T=0.04) is given by: 

(k)0.2503u- 1)+(k0.4707.u+(k)0.7656.y=1)+(ky mmmm  
Let   k, l and m be respectively the degree of the polynomials R, S and T, such that: 
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Therefore the regulation parameters vector is: 
),,( 100 tts=θ  

Let us define the regression vector ϕ : 
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The recurrence equation of Tϕ after the discretization (T=0.04)  is given by: 

(k)]u 0.0003073- 1)+(ku 0.0003405 -
    y(k)0.0003073-1)+ y(k[0.0003405+(k)  0.7356-1)+(k  1.726=2)+(k 
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The command law is given using the following equation: 
                                   )( 1ϕθ Pu T−=                 
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The real output of the system is shown in figure Fig. 5. 
 

 
Fig .5.  The real system output y and the fractional order model output ym 

 

The following figure shows us the form of the error e: 

 

 
Fig .6. The error signal between y and ym 

 

From figures Fig. 5 and Fig. 6, we can remark that the output of the system follows 
the original (reference) model and the small oscillations are caused by the sudden 
change of the original signal. Hence, the system becomes more precise using the frac-
tional original model with a better behaviour regarding the output performance.             
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4.   Conclusion 

In this work, an adaptive control with a fractional reference model is suggested.       
The main idea consists of making beforehand an approximation of the fractional refer-
ence model using one of the famous approximation methods (Oustaloup). After that, 
we use a classical algorithm of the adaptive control with the approximated referential 
model. 
       Our objective is to find a control which takes the system to the desired state (the 
referential signal) with improved performance behavior. The results of simulation 
have confirmed the efficiency of the adaptive control with a fractional reference mod-
el. Further work will concern the introduction of such fractional order filters in the 
adaptation algorithm and control law. 

References 

[1] K. J. Astrom and B. Wittenmark, “Adaptive Control”, Addison-Wesley, MA, 
1995.  

[2] Z. F. Lu, “Time-domain simulation and design of SISO feedback control systems”, 
Doctoral Dissertation, National Cheng Kung University, 2004, Taiwan, China. 

[3] B. M. Vinagre, I. Petras, I. Podlubny, and Y. Q. Chen, “Using fractional-order 
adjustment rules and fractional order reference models in model reference adaptive 
control,” Nonlinear Dynamics: Int. J. of Nonlinear Dynamics and Chaos in Engi-
neering Systems, vol. 29, pp. 269–279, 2002. 

[4] S. Ladaci, J. J. Loiseau and A. Charef, “Adaptive Internal Model Control with 
fractional order parameter,” International Journal of Adaptive Control and Signal 
Processing, vol. 24, pp. 944-960, 2010. 

[5] S. Ladaci and A. Charef, “On Fractional Adaptive Control,” Nonlinear Dynamics, 
vol. 43, no. 4, pp. 365–378, March 2006. 

[6] M. Makoudi and L. Radouane, “A robust model reference adaptive control for 
non-minimum phase systems with unknown or time-varying delay,” Automatica, 
vol. 36, pp. 1057–1065, 2000. 

[7] R. Caponetto, L. Fortuna, and D. Porto, “A new tuning strategy for a non integer 
order PID controller,” IFAC2004, Bordeaux, France, 2004. 

[8] A. Oustaloup. "La commande CRONE". Editions HERMES, Paris, 1991.  

[9] M. Axtell and M. E. Bise, “Fractional calculus applications in control systems,” 
the IEEE National Aerospace and Electronics Conference, New York, USA, pp. 
563-566, 1990. 



Adaptive Control with Fractional Order Reference Model − Y. BENSAFIA et al. 1623 

[10] A.  Djouambi, A. Charef and A. Voda Besançon,  “ Fractional Order Robust 
Control Based on Bodes Ideal Transfer Function,” RS-JESA, vol. 42, Fractional 
order systems, pp. 999-1014, 2008. 

[11] A. Oustaloup. "La Dérivation Non Entière : Théorie, Synthèse et Applications". 
Editions HERMES, Paris, 1995.  

[12] C. C. Hang, P. C. Parks. Comparative studies of model reference adaptive control 
systems. IEEE Transaction on Automatic Control, 1973, 18:419–428 

[13] A. J. Calderon, B. M. Vinagre and V. Feliu, “ Fractional order control strategies 
for power electronic buck converters,” Signal Processing, vol. 86, pp. 2803-2819, 
2006 

[14] C. Hwang, J. F. Leu and S.Y. Tsay: “A note on time-domain simulation of feed-
back fractional order systems”, IEEE Trans. On Automatic Control, vol. 47, no. 4, 
2002, pp. 625 – 631. 

[15] A. Oustaloup, F. Levron, B.  Mathieu and F. Nanot. "Frequency-Band Complex   
Non integer Differentiator: Characterization and Synthesis". IEEE Transactions on 
Circuits and Systems I, vol.47, n°1, pp.25-39, 2000. 

[16] A. Oustaloup, P. Melchoir, P. Lanusse, C. Cois, and F. Dancla “The CRONE 
toolbox for Matlab”  In Proceedings of the 11th IEEE International Symposium on 
Computer Aided Control System Design-CACSD, Anchorage, USA, September 
2000. 

[17] J. Sabatier, A. Oustaloup, A. G. Iturricha and F. Levron, “CRONE control of 
continuous linear time periodic systems: Application to a testing bench,” ISA 
Transactions, vol. 42, pp. 421-436, 2003. 


