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Abstract. The multimodel approach is recently developed in order to
resolve the complexity of many industrial process. Nevertheless, this ap-
proach is often confronted to several difficulties, such as, the determi-
nation of the useful models’base. A new approach for a determination
of a models’base for the representation of linear time delay systems is
presented. The effectiveness of this method has been illustrated through
simulation.

1 Introduction

Several researches involve analyse, modeling and control of time delay systems.
To name a few, the monographic gives examples in biology, chemistry, economics,
mechanics, physics, physiology, population dynamics, as well as in engineering
sciences.
Unlike ordinary differential equations, delay systems are infinite dimensional in
nature [8] and time delay is, in many cases, a source of complex behavior [8](os-
cillations, instability, bad performance). It is known that necessary and sufficient
conditions can be derived in the case of a known constant time delay, but, if the
value of the time delay is not available, then the time delay estimation consti-
tutes the greatest challenge. The stability issue and the performance of control
systems with time delay are, therefore, both of theoretical and practical impor-
tance [5] [13].
Moreover, the problem of identifying the time delay in real time presents a one
of the most crucial open problems in the field of time delay systems, indeed,
several control techniques can be applied only if the delay is well known. Liter-
atures have abundant identification methods when the time delay is unknown.
Some typical approaches are proposed, we cite the principal one to identify time
delay system. One approach based on the approximation of the time delay by
a rational transfer function or Pade approximation is proposed in [7] [11]. Such
approach requires estimation of more parameters because the order of the ap-
proximated system model is increased and an unacceptable approximation error
may occur when the system has a large delay.
Another method that identifies the delay and the system parameters is presented
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in [1]. This method is based on the correlation functions analysis. The method
developed in [19] evolves the identification of delay and the parameters of a
system operating in the presence of colored noise. This method based also on
correlation analysis [4]. In a somewhat dual way, another [6] which suggest an
algorithm to recursively update the value of a small delay by inspection of the
phase contribution of the real negative zero arising in the corresponding sampled
system. The main drawback of these methods is that iteration on time delay is
needed to estimate the parameters and this makes on line implementation diffi-
cult.
The two-step procedure [3], first assumes that a known time delay and estimates
the other transfer parameters, then minimizes the least squares error perfor-
mance index with respect to the delay value.
Nevertheless, there are few algorithms that address the recursive identification
of unknown time varying delay (time varying parameters and delay) [16] [18].
This work exploits the multimodel approach for the representation of the time
varying time delay systems.
The multimodel approach was suggested to resolve some difficulties of both mod-
elling and control. The multimodel approach consists in representing the system
by different simple models having each a given validity domain. These models
form the models’base.
In this paper, the on line estimation problem of time delay was mentioned
through a minimum variance generalized adaptive control scheme. To overcome
this problem, the multimodel approach was exploited. In fact, a models’ base
generation method was proposed for the multimodel representation of this kind
of systems.

This paper is organized as follows. In section 2, we present the recursive es-
timation of time delay system. The multimodel representation for class of time
delay systems is investigated in section 3. Section 4 contains several illustrative
examples.

2 Recursive estimation of time delay system

In this part, a recursive identification method (simultaneously the parameters
and the delay) will be presented. This method is a modified version of any
recursive parameter estimator (Least squares, instrumental variable, maximum
likelihood, etc.) [3].
Consider the ARMAX model given by:

A(q−1)y(k) = q−d(k)B(q−1)u(k) + v(k) (1)

where,
A(q−1) = 1 + a1q

−1 + ... + anaq−na

B(q−1) = b1q
−1 + ... + bnbq

−nb
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with y(k) is the system output signal, u(k) is its input signal v(k) is the dis-
turbance signal (random data sequence with zero mean and finite variance) and
d(k) is the time varying delay.
The equation (1) is rewritten:

y(k) = ϕ(k, d(k))θ + v(k) (2)

where:
ϕ(k, d(k)) = [−y(k − 1),−y(k − 2), ...,−y(k − na),

u(k − d(k)− 1), ..., u(k − d(k)− nb)]

θ = [a1, a2, ..., ana , b1, b2, ..., bnb
]T

(3)

θ is the vector parameters to be estimated and ϕ(k, d(k)) is the observation
vector.
The estimated output is given by:

ŷ(k) = ϕ̂(k, d̂(k))θ̂ (4)

where:
ϕ̂(k, d̂(k)) = [−y(k − 1),−y(k − 2), ...,−y(k − na),

u(k − d̂(k)− 1), ..., u(k − d̂(k)− nb)
]

θ̂ =
[
â1, â2, ..., âna , b̂1, b̂2, ..., b̂nb

]T

(5)

θ̂ and d̂ represent the estimated parameter vector and the estimated delay. The
prediction error is defined by:

e(k) = y(k)− ŷ(k) = y(k)− ϕ̂(k, d̂(k))θ̂ (6)

The criterion to be minimized is given by:

J =
k∑

i=0

[e(i)]2 (7)

Minimizing J with respect to the parameters and the delay can identify θ̂ and
d̂. i.e,

∂J

∂θ̂
= 0 (8)

and
J(d̂) = min

d̂,θ̂
[J(di)]∀di ∈ [dmin, dmax] (9)

where [dmin, dmax] is the delay margin evolution. If the parameters and delays
are correctly estimated, the equation (9) has a minimum equal to zero. In the
presence of measurement errors, equation (9) is sufficient to identify correctly
the delay.
The estimation algorithm is based on two steps. The first one is to use the

1694 IJ-STA, Volume 6, N°1, June, 2012.  
 



recursive least squares estimator to estimate the parameters assuming that the
latest delay is correctly estimated. The second one is to estimate the delay by
considering the last parameters identification.
Thus, by the minimization of the criterion, we lead finally to the modified version
of recursive least squares algorithm given by the following equations:

θ̂(k) = θ̂(k − 1) + K(k)(y(k)− ϕ̂(k)θ̂(k − 1)) (10)

K(k) = P (k − 1)ϕ̂T (k)
[
λi + ϕ̂(k)P (k − 1)ϕ̂T (k)

]−1
(11)

P (k) = [I −K(k)ϕ̂(k)] P (k − 1)/λi (12)

J(k, d) = λiJ(k − 1, d) +
[
y(k)− ϕ(k, d)θ̂(k − 1)

]2

d ∈ [dmin, dmax]
(13)

J(k, d̂) = min
d̂,θ̂

[J(k, d)]∀d ∈ [dmin, dmax] (14)

λi is a weight between 0 and 1. To ensure the convergence of the parameters, we
choose a gain P (k) initially high P (0) = CId where the constant C ' 103 and
Id is the identity matrix [12].
Equations (10), (11), (12) are, obviously, the standard recursive least squares
algorithm for a constant delay. The equations (13) and (14) deal with the delay
estimation. The implementation of this additional equations requires minimum
storage and computation time as they contain only simple multiplications and
additions and a simple search routine.
By examining this algorithm we can see that the estimated value of the delay
will not change at every iteration as do the estimated values of parameters. In
fact, with increasing the data picked out on the system, the parameters converge
to the real parameters and their variation is relatively slow and at the same time
the period in which the estimated delay is unchanged becoming larger. When
the parameters converge to their final values, the estimated delay reaches the
correct value and leave the parameters converge to the correct values quickly.
This behavior requires the adjustment of the covariance matrix P (k).

3 Multimodel representation for class of time delay
systems

The implementation of the multi-model approach is necessary for the generation
phase of base model’s that can reproduce the behavior of the system in its entire
operating range.

3.1 The model’s base generation

This method exploits the data classification method proposed by Chiu. It is
divided into two steps, the first is to classify the data set obtained from identifi-
cation measurements. The second treats the structural and parametric identifi-
cation exploiting the data relating of each cluster obtained from the classification
phase [9] [10].
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Construction of the classification data The classification procedure consists
to select among a set of data points representing classes that will be centers of
classes through a computation of potentials.
The classification data s(k) is obtained by a combination of two terms. The first
term focus the classification according to the time delay, whereas, the second
term focus the classification according to the parameters of the system. The
first term is obtained from maximizing the crosscorrelation function between
the input and the outputs increments.

R(k, h) =
1
k

k∑
j

u(j − h)(y(j + 1)− y(j)) (15)

sd(k) = max(R(k)) (16)

The second term is a normalization of the output:

sp(k) =
y(k)
ymax

(17)

The data s(k) are calculated by the formulation:

s(k) = αsd(k) + (1− α)sp(k) (18)

where α is a ponderation between 0 and 1.
If α is equal to 1, then we focus the classification according to the time delay,
else, we allows the classification according to the system parameters.

Classification of the identification data Having a set identification data
(si, i = 1, ..., N), the classification procedure consists to associate to each datum
si a potential Pi given by the following expression:

Pi =
M∑

j=1

e
(
−4‖si−sj‖2

r2
a

)
(19)

where ra is a positive parameter controlling the decrease ratio of the potential.
The potential decreases exponentially as sj away from si. The first cluster center
that we call sc1 is the datum whose potential P ∗

1 is the maximum.
To avoid selecting the first center sc1 and its neighborhood as other cluster
centers, the procedure assigns to each potential P ∗

i the following new value:

Pi ← Pi − P ∗
1 e

(
−4‖si−sc1‖2

r2
b

)
(20)

The parameter rb (rb > 0 must be selected larger than ra to favor the operation
related to the selection of the other cluster center completely different from the
last one.
Next, we select, as second cluster center be sc2 whose modified potential given
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by the relation (20). As similar, we choose the cth cluster center scc with the
maximum potential P ∗

c and modify the potentials as follows:

Pi ← Pi − P ∗
c e

(
−4‖si−scc‖2

r2
b

)
(21)

However, the selection of centers obeyed at each iteration, the following condi-
tions:

– if P ∗
c > ε1P

∗
1 , the selection is permitted.

– if P ∗
c < ε2P

∗
1 , the selection is completed.

– if ε2P
∗
1 ≤ P ∗

c ≤ ε1P
∗
1 et if:

Min |scc − sci|
ra

< 1− P ∗
c

P ∗
1

, i = 1, ..., c− 1. (22)

where ε1 and ε2 are two positive parameters (ε1 > ε2) introduced
by Chiu, scc is the current center and sc1,sc2,...,sc(c−1) are the last
selected ones, the center to be retained corresponds, in this case, to
the maximum value of the potentials after rejecting the current value
P ∗

c .

After the selection of the cluster center, we searched the elements belonging to
each class by the calculate of distance between si and scc and classify yi into the
class whose distance is minimum.

Clusters’ modeling After the collection of data for each class c (c,1,...,N),
a structural and parametric identification must be carried out to elaborate the
local model.
We consider the ARX structure giving by the following structure:

yMc(k) = −
na∑
l=1

acly(k − l) +
nb∑

j=1

bcju(k − j − d) (23)

In this paper, we suppose the knowledge of the structure ( the orders na and nb

are known).
The parametric identification use the modified recursive least square method
explained in the section II and exploits the observation vector relating to the
same cluster c.

3.2 Generation of the multimodel output

The multimodel output ym(k) is obtained by the fusion of the elementary outputs
of the generated models and it is written:

ym(k) =
N∑

c=1

vc(k)yc(k) (24)

Where yc(k) is the elementary output of the model Mi and vc(k) is the validity
of this model which is carried out using the residue approach.
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3.3 Validities estimation based on classical residue approach

The validities of models Mi(i = 1, ..., c) are calculated using the residues ap-
proach formulated by the relations (25)-(29):

rc(k) = |y(k)− yMc(k)| ; c = 1, ...N (25)

where N represents the number of models based [9].

This expression must be normalized to have a residue between 0 and 1:

r′c(k) =
rc(k)

N∑
j=1

rj(k)
(26)

The validity which varies in the contrary sense of the residue, can then be ex-
pressed by:

v′c(k) =
vc(k)
N − 1

(27)

In order to reduce the perturbation phenomenon due to the inadequate models,
we reinforce the validities as follow:

vr
c (k) = v′c(k)

N∏
j=1
j 6=c

(1− e−(
r′j(k)

σ )2) (28)

with σ is a positive number to control the transition between the different models
of the database:

0 < σ ≤ 1

The normalized reinforced validities are given by:

vr
cn(k) =

vr
c (k)

N∑
j=1

vr
j (k)

(29)

4 Simulation result

To demonstrate the interest and the contribution in performance of the proposed
approach, the deterministic and stochastic cases are investigated.
We consider a discrete non stationary second order system with time varying
delay described by the following equation:

y(k) = −a1(k)y(k − 1)− a2(k)y(k − 2)
+b1(k)u(k − 1− d(k)) + b2(k)u(k − 2− d(k))

ai(k), bi(k) and d are the time varying parameters and the time delay. Their
variation law is given by this table:

1698 IJ-STA, Volume 6, N°1, June, 2012.  
 



Les itérations a1(k) a2(k) b̂1(k) b̂2(k) d(k)

0 < k < 500 −1.2 0.25 0.35 0.5 1

500 < k < 1000 −1.3 0.35 0.2 0.25 2

1000 < k < 1500 −1.40 0.45 0.1 0.35 3
Table 1. The variation law of the parameters and the time delay.

4.1 Deterministic case

The system is excited in it’s full operating range by a pseudo random binary
sequence so as to generate the necessary classification data. The Fig 1 illustrate
the evolution of the classification data:

0 500 1000 1500
0

0.5

1

1.5

2

2.5

k

Fig. 1. The evolution of the classification data s(k).

By examining the Fig 1, we can release the presence of three classes.
Besides, the application of the classification method leads to three clusters fo-
cused on the cluster centers sc1 , sc2 and sc3 . The Fig 2 shows the evolution of
the potentials of the different data during the classification procedure with the
emplacements of the cluster centers.
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Fig. 2. The evolution of the potentials with the emplacements of the cluster centers.

After obtaining the classes and the corresponding elements, we carry out an
identification of the obtained models (Mc, c=1...,3) realized by the least squares
modified algorithm.
The table 2 present the three models:

Models â1(k) â2(k) b̂1(k) b̂2(k) d̂(k)

M1 −1.2 0.25 0.35 0.5 1

M2 −1.3 0.35 0.2 0.25 2

M3 −1.40 0.45 0.1 0.35 3
Table 2. The models.

In addition, by exploiting all the data, we identify a global model using classical
recursive least square algorithm [12]. A validation of the model base, using a
sinusoidal input described by the relation (30), is realized.

u(k) =

{
e−0.005k(1 + sin(k/10)) k 6 NI/2
u(k −NI/2) k ¿NI/2

(30)

The fig 3 gives the evolution of real output y(k), multimodel output ym(k) and
global output yg(k).
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Fig. 3. The multimodel, the global and the real outputs evolutions.

This figure show that the multimodel output ym(k), which is generated by
the fusion of the elementary outputs of the local models is practically equal to
the real output. Compared to the classical method, we find out the contribution
of the multimodel approach.
The reinforced validities is given in Fig 4:

100 200 300 400 500 600 700 800 900
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

k

v
r

1n
v

r

2n
v

r

3n

Fig. 4. The evolution of the potentials with the emplacements of the cluster centers.

This figure illustrate the contribution of each model in the representation of the
system behavior in their function area and their complementarity. This contri-
bution is quantified by the delay value of each model.

4.2 Stochastic case

We consider the same system with the same parameters and delay variation and
a signal of noise is added to the system’s output as given by the relation (31) to
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evaluate the robustness of the suggested method:

y(k) = −a1(k)y(k − 1)− a2(k)y(k − 2)
+b1(k)u(k − 1− d(k)) + b2(k)u(k − 2− d(k)) + v(k)

(31)

where v(k) is a white noise (0, σ) with σ2 = 0.1
The Fig 5 records the evolution of the classification data:

0 500 1000 1500
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2.5
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k

Fig. 5. The evolution of the classification data s(k).

The application of the suggested method on the noisy data set s(k) leads to
three different classes.
This is illustrated by the evolution of the potentials and the cluster centers
presented by Fig 6:
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Fig. 6. The evolution of the potentials with the emplacements of the cluster centers.
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Indeed, the classification procedure yields to three clusters which are mod-
eled by three models given in the table 2:

Models â1(k) â2(k) b̂1(k) b̂2(k) d̂(k)

M1 −1.1802 0.2315 0.3547 0.4926 1

M2 −1.3328 0.3918 0.1838 0.2614 2

M3 −1.4012 0.4398 0.1118 0.3267 3
Table 3. The models.

By exploiting all the noise data collected idendification on the system, we iden-
tify a global model. The same signal of validation u(k) is considered to validate
the models base.
The Fig 7 shows the evolution of the multimodel output generated by the fusion
of the elementary of each model and the output of the global model yg.
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Fig. 7. The multimodel, the global and the real outputs evolutions.

This figure shows a relatively accurate modeling by exploitation of the multi-
model approach. In fact, we can see clearly that the multimodal output still
describe the real output of the system. The reinforced validities is given in Fig
8:
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Fig. 8. The evolution of the potentials with the emplacements of the cluster centers.

5 Conclusion

The multimodel approach is an effective tool, particularly well suited to mod-
eling systems with variable delays. A method for generating a basic model for
the representation of delay systems is developed in this paper. The numerical
simulation on time varying delay system in the deterministic and stochastic case
are very satisfactory compared to the classical modeling.
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