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Abstract. This paper treats the parametric estimation methods of nonlinear 
stochastic systems, which can be described by the discrete-time Hammerstein 
mathematical models. The dynamic linear block of the considered 
Hammerstein mathematical model is described by the ARMAX mathematical 
model, single-input single-output, with unknown slowly time-varying 
parameters. Two recursive parametric estimation methods are studied and 
compared. It is about the Recursive Extended Least Squares (RELS) method 
and the Recursive Approximated Maximum Likelihood (RAML) method. 
Different types of parametric estimation algorithms corresponding to the two 
methods are developed on the basis of the prediction error method. The 
convergence conditions and the techniques of the practical implementation of 
these algorithms are given. The results of a simulation study are included to 
illustrate the validity of the developed parametric estimation algorithms. 
Key words: Nonlinear stochastic systems; Discrete-time Hammerstein 
mathematical model; RELS parametric estimation method; RAML parametric 
estimation method; Parametric estimation algorithms. 

 

1.  Introduction 
Over the past three decades, several studies dealing with the analysis, identification 
and control of nonlinear systems have been developed (see, e.g., Kamoun, 2003; 
Tlili and Mibar, 2007; Mâatoug et al., 2008; Hajji et al., 2008; Billings, 2013). The 
first step of the study of control law, which can apply to a nonlinear system, is the 
description of this system by a mathematical model. The parameters of this 
mathematical model must be estimated using an appropriate parametric estimation 
method (see, e.g., Kamoun, 2003; Billings, 2013). 

The description of a nonlinear system by a mathematical model can present 
difficulties, because we must take account of the nature of the concerned non-
linearity. Indeed, the nonlinear systems often have many different types. Several 
works relating to the description of nonlinear systems by various types of 
mathematical models were published in the literature (see, e.g., Billings, 1980; 



Development of parametric estimation methods for nonlinear stochastic systems − S. Kamoun     1909 

 

 

Kortmann and Unbehauen, 1988; Chen and Billings, 1989; Haber and Unbehauen, 
1990; Haber and Keviczky, 1999; Kamoun, 2003; Billings, 2013). 

We can classify mainly the mathematical models being able to describe the 
nonlinear systems in: state-space mathematical models, input-output mathematical 
models, mathematical models in series of functions and mathematical models in 
connected blocks. 

We mainly consider two types of mathematical models in connected blocks, which 
can describe nonlinear systems. This is the Hammerstein mathematical model, 
which consists of a nonlinear static block followed by a linear dynamic block, and 
the Wiener mathematical model, which consists of a linear dynamic block followed 
by a static nonlinear block. 

Several works were published in the literature, which treat the identification of 
nonlinear systems described by Hammerstein mathematical models (see, e.g., 
Eskinat et al., 1991; Rangan et al., 1995; Belforte and Gay, 2001) or Wiener 
mathematical models (see, e.g., Wigren, 1993; Kamoun, 2003). Note that different 
identification methods of nonlinear systems, which are described by other types of 
mathematical models, have been developed (Billings and Voon, 1986; Billings, 
2013). 

In this paper, we consider the nonlinear systems operating in a stochastic 
environment, which can be described by Hammerstein mathematical models. The 
Hammerstein mathematical model, which corresponds to a class of the mathematical 
models in connected blocks, consists of a static (also called zero memory) nonlinear 
block followed by a dynamic linear block. We suppose that the dynamic linear block 
of the nonlinear system is described by an input-output mathematical model of the 
type ARMAX (Auto-Regressive Moving Average with eXogenous input), linear, 
single-input single-output and with unknown slowly time-varying parameters. 

Noting that several types of the Hammerstein mathematical models are used in the 
identification of the nonlinear systems, and this, by considering various 
configurations of the static nonlinear block (see, Haber and Keviczky, 1999; Vörös, 
2002). In addition, different types of problems relating to the identification of the 
nonlinear systems described by the Hammerstein mathematical model were studied 
by several authors, while being based over various methods (see, e.g., Eskinat et al., 
1991; Rangan et al., 1995; Al-duwaish Nazmul Karim, 1997; Li, 1999; Belforte and 
Gay, 2001; Kamoun, 2003; Billings, 2013). 

The purpose of this study is to study recursive parametric estimation algorithms 
for the nonlinear systems operating in a stochastic environment, which can be 
described by a discrete-time Hammerstein mathematical model. We propose to 
formulate the parametric estimation problem by using the recursive methods, which 
are combined with the prediction error method. Thus, two recursive parametric 
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estimation methods are analysed and compared. It is about the Recursive Extended 
Least Squares (RELS) method and the Recursive Approximated Maximum 
Likelihood (RAML) method. Different types of parametric estimation algorithms 
corresponding to the two methods are developed. The practical implementation of 
these algorithms is based of the knowledge of several experimental measures 
(couples of input-output) resulting from the considered nonlinear stochastic system. 

The rest of this paper is organized as follows: In the Section 2, the description of a 
nonlinear stochastic system by the discrete-time Hammerstein mathematical model 
is considered. The formulation of the parametric estimation problem of nonlinear 
stochastic systems is treated in the Section 3, on the basis of the RELS and the 
RAML parametric estimation methods and by using the prediction error method. 
Parametric estimation algorithms are developed. The convergence conditions and 
the techniques of the practical implementation of these algorithms are given. A 
simulated example is treated in Section 4, which illustrate and valid the 
performances of the developed parametric estimation algorithms. Section 5 gives a 
conclusion.  

2.  Discrete-time Hammerstein mathematical model 
The description of a nonlinear system by the Hammerstein mathematical model 
corresponds to a structure of mathematical model, which consists of a static 
nonlinear block followed by a dynamic linear block, such that shown in Figure 1. 
 
 
 
 
 
 

 
In all that will follow, we study the nonlinear stochastic systems that are described 

by a discrete-time Hammerstein mathematical model, where the dynamic linear 
block is described by the ARMAX mathematical model, single-input single-output, 
with unknown slowly time-varying parameters, but the structure parameters (order, 
delay) are well known. 

The structure of the considered discrete-time Hammerstein mathematical model 
can be illustrated by Figure 2. 
 
 
 

Figure 1. Structure of the Hammerstein mathematical model. 
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The dynamic linear block of the considered Hammerstein mathematical model, as 

shown in Figure 2, is described by the following ARMAX mathematical model: 

)()()(),()(),( 111 keqCkhkqBkykqA −−− +=  (1) 
where )(kh  and )(ky  are respectively the input and the output of the dynamic 
linear block at the discrete-time k , )(ke  represents the noise (together random 
disturbances) which can act on the output )(ky , and ),( 1 kqA − , ),( 1 kqB −  and 

)( 1−qC  are polynomials, which are defined by: 
A
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where An , Bn  and Cn  represent the orders of the polynomials ),( 1 kqA − , ),( 1 kqB −  
and )( 1−qC , respectively. 

We suppose that the noise sequence )}({ ke  is constituted by independent random 
variables with zero mean and variance 2σ . 

Nothing the parameters intervening in the polynomials ),( 1 kqA −  and ),( 1 kqB −  
are unknown slowly time-varying. However, the parameters intervening in the 
polynomial )( 1−qC  are unknown, but constant. Also, the roots (in q ) of the 
polynomial )( 1−qC  are assumed to be strictly within the unit circle. This is related 
on the made assumption of the noise )(ke . 

The static nonlinear block of the considered Hammerstein mathematical model is 
given by the following equation:  

)]([)( kufkh h=  (5) 
in which [.]hf  represents the nonlinear function. 

Figure 2. Structure of the considered discrete-time 
 Hammerstein mathematical model. 
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The equation (5) can be approximated by a polynomial, such that: 

∑
=

+=
p

r

r
r kkukh

1
)()()( δβ  (6) 

where )(kδ  represents an approximation error of the nonlinear function, rβ , 
pr ,,1= , are unknown parameters and p  indicates the degree of the non-

linearity, which must be selected in a suitable way. 
Let us note that the value of the approximation error )(kδ  depends on the choice 

of the degree of the non-linearity p . Thus, if the value of the degree of the non-
linearity p  is selected sufficiently large, then the value of this approximation error 

)(kδ  becomes rather low. In this context, we suppose that the choice of the degree 
of the non-linearity p  is made in such way that the approximation error )(kδ  can 
be neglected (i.e., 0)( =kδ ). 

From equations (1) and (6), which are relating to the linear dynamic block and the 
static nonlinear block of the Hammerstein mathematical model, respectively, and by 
neglecting the value of the approximation error )(kδ , we can express the output 

)(ky  of the considered nonlinear system in the following form: 
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We suppose here that the polynomials ),( 1 kqA − , ),( 1 kqB −  and )( 1−qC  of the 
ARMAX mathematical model (1) have the same order n  (i.e., CBA nnnn === ). 
This assumption does not constitute a restriction, but it was made for reasons of 
simplicity. 

Taking into account the above assumption, the output )(ky  of the considered 
nonlinear stochastic system that is described by (7) can be expressed in the 
following developed form: 

)()1()(           

)()()2()(           

)1()()()2()(           

)1()()()()1()()(

1

2

112

111

nkeckecke

nkukbkukb

kunkukbkukb

kukbnkykakykaky

n

p
pn

p
p

p
pn

n

−++−++

−++−+

−++−++−+

−+−−−−−=









ββ

βββ

β

 (8) 

3.  Study of recursive parametric estimation methods 
This section is relating to the parametric estimation of the nonlinear stochastic 
systems, which can be described by the discrete-time Hammerstein mathematical 
model (8). The formulation of this parametric estimation problem will be carried out 
while being based on the RELS parametric estimation method and the RAML 
parametric estimation method, by using the prediction error method and from the 
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knowledge of the several measured values of the input and the output of the 
considered nonlinear system. 

3.1.  Formulation of the parametric estimation problem 
This subsection is reserved to the formulation of the parametric estimation problem 
of the discrete-time Hammerstein mathematical model (8). 

Let us notice that the structure of the discrete-time Hammerstein mathematical 
model (8) corresponds to a structure of a mathematical model being able to be made 
up of several inputs and only one output. This Hammerstein mathematical model 
contains the parameters )(kbj , nj ,,1= , which are nonlinear with respect to the 
parameters rβ , pr ,,1= . However, this Hammerstein mathematical model is 
linear with respect to the parameters )(kai , ni ,,1= . Let us add that there exists a 
certain redundancy of these parameters )(kbj  and rβ . Consequently, we can affirm 
that the formulation of a parametric estimation scheme, in order to obtain estimated 
parameters with a minimum variance, presents serious difficulties, particularly in the 
practical implementation. 

In addition, some of these difficulties can be surmounted if we consider the two 
following situations: 
1. the knowledge of one of the parameters )(kbj , nj ,,1= . For example, let us 

suppose that the parameter )(1 kb  is well known at any discrete-time k . Thus, we 
can directly determine the estimated parameters )(ˆ krβ , pr ,,1= . 
Consequently, we can easily determine the other parameters )(,),(2 kbkb n , 
while basing ourselves on the knowledge of these estimated parameters )(ˆ krβ ; 

2. the knowledge of one of the parameters rβ , pr ,,1= . Let us suppose, for 
example, that the parameter 1β  is known. Then, we can directly deduce from 
them the estimated parameters )(ˆ kbj , nj ,,1= . While basing itself on the 
knowledge of these estimated parameters, we can determine easily the parameters 

nββ ,,2  . 
For reasons of simplicity of the formulation of the posed parametric estimation 

problem, in order to develop the recursive parametric estimation algorithms on the 
basis of the RELS and the RAML methods, where their practical implementation 
can be ensured, we must consider one of the above situations. 

Thus, we propose here to consider the first situation, where the parameter )(1 kb  
intervening in the discrete-time Hammerstein mathematical model is supposed to be 
known time-invariant, such as: kkb ∀= ,1)(1 . 

By taking account of this assumption, we can define the output )(ky  of the 
considered nonlinear stochastic system in the following matrix form: 

)()()()( kekkky T += ψθ  (9) 



1914     IJ-STA, Volume 7, N°1, April 2013. 

 
 

where the true parameter vector )(kθ  and the observation vector )(kψ  are given 
by: 
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Let us note that the dimension of these vectors )(kθ  and )(kψ  increases of the 
value n  when the degree of the non-linearity p  increases of the value 1. 

We propose to use the two following notations: 
112121 )()()()( ββ kbkbkfkf nn  = , pnpnpp kbkbkfkf ββ )()()()( 22  = .  

Thus, the parameter vector )(kθ  can be defined by: 
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with: 1221 )()( βkbkf = , etc. 
The posed problem consists to estimate the parameters intervening in the discrete-

time Hammerstein mathematical model (8), by using the RELS and the RAML 
parametric estimation methods, while basing itself on the prediction error method. 

The prediction error method is based on the minimization of a certain quadratic 
criterion, which corresponds to the difference between the output of the nonlinear 
stochastic system and that predicted by the adjustable model. 

The a priori predicted output )(ky  by the adjustable model of the output )(ky  of 
the nonlinear stochastic system can be defined by the following expression: 
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or in the following compact form: 
)(ˆ)1(ˆ)( kkky T ψθ −=  (14) 

with )1(ˆ −kθ  the estimated parameter vector at the discrete-time 1−k  and )(kψ  
corresponds to the prediction observation vector )(kψ , where the noise sequence 

},,1);({ nhhke =−  is replaced by the a priori prediction error sequence 
},,1);({ nhhk =−ε , such that: 
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where )(kε  denotes the a priori prediction error, which can be given by: 
)()1(ˆ)()( kkkyk T ψθε 

−−=  (16) 
The estimated parameter vector )(ˆ kθ  at the discrete-time k  can be defined by: 
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The structure of the parametric estimation of the considered nonlinear stochastic 
system, by using the prediction error method, can be shown in the following Figure 
3: 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

It important to indicate that the a priori prediction error )(kε  corresponds to the 
best estimate of the noise )(ke , notably if the value of the discrete-time k  is 
sufficiently large (i.e., if ∞→k , then )()( ∞≈∞ eε ). 

Nothing that the adjustment of the estimated parameters of the adjustable model, 
at every discrete-time k , is ensured by the adaptation mechanism, while taking care 
to minimize the difference between the output )(ky  of the nonlinear stochastic 
system and the predicted output )(ky  of the adjustable model. 

Figure 3. Structure of the parametric estimation of the considered 
non-linear stochastic system by using the prediction error method. 
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In the two following subsections, we will develop the RELS and the RAML 
parametric estimation methods, which can by applied to the considered nonlinear 
stochastic system that is described by the discrete-time Hammerstein mathematical 
model (8). 

3.2.  Recursive extended least squares method 
This subsection is reserved to develop a parametric estimation algorithm on the basis 
of the RELS parametric estimation method, which is combined with the prediction 
error method. This algorithm must allow the estimate of the unknown slowly time-
varying parameters intervening in the parameter vector )(kθ , as described by (10) 
or (12). 

By examining the discrete-time Hammerstein mathematical model (9), and taking 
into account that the noise sequence )}({ ke  is constituted by independent random 
variables with zero mean and variance 2σ , it results that the ordinary Recursive 
Least Squares (RLS) method can be used to estimate the parameter vector )(kθ , 
which is defined by (10), while ensuring unbiased estimate. However, the 
implementation of the RLS parametric estimation method is not possible, since that 
the observation vector )(kψ  that given by (11) contains the noise sequence 

},,1);({ nhhke =− , which is not measurable. To overcome this difficulty, we can 
use an extension of the RLS parametric estimation method. This corresponds to the 
RELS parametric estimation method. In this case, we must use the prediction 
observation vector )(kψ , which is given by (15), in the RELS parametric estimation 
algorithm (see, Kamoun, 2003). 

In fact, the RELS parametric estimation method corresponds to an extension of the 
RLS parametric estimation method, where the parameter vector and the observation 
vector are extended. In this direction, the extension corresponds to the estimate of 
the parameters hc , nh ,,1= , who have a connection with the noise sequence 

},,1);({ nhhke =− . 
In the case of a nonlinear stochastic system with unknown time-invariant 

parameters, we can show easily that the RELS parametric estimation algorithm, 
which can estimate these parameters, is defined by: 
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 (18) 

where )(kP  is an adaptation gain matrix, which corresponds to the variance-
covariance matrix of the noise )(ke . 

It is obvious that the RELS parametric estimation algorithm (18) cannot apply to a 
nonlinear stochastic system with unknown slowly time-varying parameter, as given 
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by (9). This comes owing to the fact that the structure of the RELS parametric 
estimation algorithm (18) is not likely to follow the parametric variations of such 
system. 

The principal element intervening in the structure of the RELS parametric 
estimation algorithm (18) is the adaptation gain matrix )(kP , which intervenes in 
the correction tem (i.e., )()()( kkkP εψ ) of this algorithm. In fact, the computation 
procedure of the adaptation gain matrix )(kP , can condition the quality of the 
estimate (see, Kamoun, 2003). Thus, the trace of the adaptation gain matrix )(kP  
decrease rather quickly towards a weak value (e.g., ]10000)0([tr =P  and 

]1)20([tr =P , where [.]tr  denotes the trace); consequently, the RELS parametric 
estimation algorithm (18) is not able to follow the time-variation of the system 
parameters for being likely to ensure a better quality of the estimate. 

To solve the above problem in order to obtain a RELS parametric estimation 
algorithm, which can be applied to the considered nonlinear stochastic system as 
given by (9), we must use an appropriate computation procedure of the adaptation 
gain matrix of this algorithm. Several approaches of the computation procedure of 
the adaptation gain matrix intervening in the parametric estimation algorithms are 
proposed in the literature (see, e.g., Ljung and Gunnarsson, 1990; Guo and Ljung, 
1995; Kamoun, 2003). Among these approaches, we will consider here that which is 
based on the introduction of a forgetting factor in the adaptation gain matrix. 

The RELS parametric estimation method, which consists to introduce a forgetting 
factor into the adaptation gain matrix of the parametric estimation algorithm, makes 
it possible to improve the capacity of this matrix, wile ensuring best followed the 
slowly time-varying parameters of the considered nonlinear stochastic system, 
which is described by (9).  

Consequently, the estimate of the parameter vector )(kθ , as described by (10), 
can be ensured by using the following RELS parametric estimation algorithm with 
variable forgetting factor: 
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 (19) 

where )(kλ  is a variable forgetting factor, such that: 1)(0 << kλ . 
The choice of the variable forgetting factor )(kλ  must be made in a suitable way. 

It can be chosen constant or time-varying parameter, and this, according the type of 
the considered application. We propose to compute the variable forgetting factor 

)(kλ  by using the following recursive equation: 
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o

o λλλλλ −+−= kk  (20) 
with: 10 o << λ , 10 o << λ . 

In this case, we can show easily that: 

∞→
=

k
k o)(  lim λλ  (21) 

Nothing that the RELS parametric estimation algorithm (19) is based on the a 
priori prediction error )(kε . However, in certain industrial applications, we may 
find it beneficial to use an a posteriori prediction error )(k



ε , which is computed 
from the knowledge of the estimated parameters at the same time k , such that: 
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Thus, we can define the following a posteriori prediction observation vector 
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ψ , which is based on the knowledge of the a posteriori prediction error 
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The estimate of the parameter vector )(kθ , as described by (10), can be also 
ensured by using the following RELS parametric estimation algorithm with variable 
forgetting factor (a posteriori version): 
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We have studied the convergence conditions of the RELS parametric estimation 
algorithm (19) by using the ordinary differential equation approach, which is 
proposed initially by Ljung (1977). We can show that: if the vectors )0(θ̂  and )(kψ  
are bounded, the adaptation gain matrix )(kP  is decreasing, the input )(ku  is a 
persistently and sufficiently exciting signal, the noise )(ke  consists of a sequence of 
an independent random variables with zero mean and variance 2σ  and the 
following condition is satisfied: 

0
2
1

)(
1

1 >−−qC
 (25) 

then, the convergence of the RELS parametric estimation algorithm (19) is ensured. 

3.3.  Recursive approximated maximum likelihood method 
We propose here to develop a parametric estimation algorithm, which can estimate 
the unknown slowly time-varying parameters of the nonlinear stochastic system that 
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is described by the discrete-time Hammerstein mathematical model (9), on the basis 
of the RAML parametric estimation method. 

According to Åström (1980), the maximum likelihood method was suggested 
initially by Gauss in 1809; then, it was developed by Ficher in 1912. This method 
consists in building a probability function, which depends on the experimental 
measurements (couples of input-output) and the unknown system parameters. The 
values of the unknown parameters are obtained as being the values that maximize 
this probability function. 

The maximum likelihood method is used by Billings and Voon (1986) for 
estimating the parameters of the nonlinear stochastic systems that is described by the 
NARMAX mathematical model, where a no recursive parametric estimation 
algorithm is developed. The major inconvenient of this algorithm is that its 
implementation in the online estimation is not possible (particularly in an adaptive 
control scheme). To overcome this difficulty, we can use an approximation of the 
maximum likelihood method, which is called in the engineering literature 
″approximated maximum likelihood method″. 

In this subsection, we propose to use the approximated maximum likelihood 
method in order to develop a recursive parametric estimation algorithm, which can 
be applied to the considered nonlinear stochastic system. 

The nonlinear stochastic system, which is described by the discrete-time 
Hammerstein mathematical model (9), can also to be described by the conditional 
distribution (or probability density function) of the output )(ky  given all the past 
input and output measurements. We assume that the probability distribution of the 
input-output data is known.  

Let us define the following input and output measurement vectors, respectively: 

)]1(,),1([)1( −=− kuukU T
  (26) 

and 

)](,),1([)( kyykY T
=  (27) 

Thus, the conditional distribution of the output )(ky  can by define as follows, and 
this, on the basis of the all past input and output data: 

))1(),1(/)(( −− kUkYkyp  (28) 
where (.)p  denotes the probability. 

The function (28) can be given in its predicted form, such that: 
)()]1(),1([)( kkUkYfky ε+−−=  (29) 

where the quantity )]1(),1([ −− kUkYf  corresponds to the predicted value (or the 
mean-square error estimate) )(ky  of the output )(ky , which can by give by: 
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)]1(),1(/)([)( −−= kUkYkyky E
  (30) 

where the symbol E  denotes the expectation. 
The formulation of the posed parametric estimation problem will be carried out 

starting from the minimization of the prediction error )(kε , while basing on the 
knowledge of the conditional distribution of the output )(ky of the considered 
nonlinear stochastic system. In this case, the probability function can be expressed 
as being the product of the conditional densities of the prediction error sequence 

)}({ kε . 
The estimate of the parameter vector )(kθ , defined by (10), by using the recursive 

approximated maximum likelihood method, consists of the minimization of the 
conditional probability of this parameter vector from the knowledge of all the values 
of the input and the output by considering a work horizon M  (i.e., Mk ,,1= ). 
This amounts writing: ))1(),(/)(( −MUMYkp θ . The parameter vector )(kθ  being 
deterministic, the use of the Bayes’ rule makes it possible to affirm that: to 
maximize ))1(),(/)(( −MUMYkp θ  is equivalent to maximize 

))();1(),1(/)(( kMUMYkyp θ−− . The likelihood function (.)L  can be defined by: 
))(),1(/)(())1(),();(( kMUMYpMUMYkL θθ −=−  (31) 

or 

))();1(,)1(/)(())1(),();((
1

kkUkYkypMUMYkL
M

k
θθ −−=− ∏

=
 (32) 

We already supposed that the noise )(ke , which acts on the considered nonlinear 
stochastic system, as described by the discrete-time Hammerstein mathematical (9), 
consists of a sequence of independent random variables with zero mean and variance 

2σ . Thus, this noise )(ke  has a Gaussian density probability. Taking into account 
this assumption, we can write the likelihood function (31) in the following form: 

))(
2

1exp(
]2[

1))1(),();((
1

2
2 kMUMYkL

M

k
M ∑

=
−=− ε

σπσ
θ  (33) 

By using the logarithm of this likelihood function, we can write: 

πσε
σ

θ 2log
2

log)(
2

1))1(),();((log
1

2
2

MMkMUMYkL
M

k
−−−=− ∑

=
 (34) 

Consequently, the maximization of the likelihood function is reduced to the 
minimization of the following quadratic criterion ))(,( kMJ θ : 

∑
=

=
M

k
kkMJ

1

2 )(
2
1))(,( εθ  (35) 
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We can show that the parametric estimation algorithm with variable forgetting 
factor, which permits to estimate the parameter vector )(kθ , as described by (10), 
on the basis of the RAML parametric estimation method, is defined by: 

)()1(ˆ)()(

)()1()()(
)1()()()1()1(

)(
1)(

)()()()1(ˆ)(ˆ

kkkyk

kkPkk
kPkkkPkP

k
kP

kkkPkk

T

T

T

ψθε

ϕϕλ
ϕϕ

λ

εϕθθ



−−=













−+
−−

−−=

+−=

 (35) 

where )(kϕ  is a filtered observation vector, which is defined by: 

)](~,),1(~),(~,),2(~),1(~                

),(~,),2(~),1(~),(~,),1(~[)(

nkknkukuku

nkukukunkykyk
ppp

T

−−−−−

−−−−−−−=

εε

ϕ





 (37) 

in that , the term )(~ ky  denotes a filtered signal at the discrete-time k , such that:  

)1,(ˆ
)()(~

1 −
=

− kqC
kyky  (38) 

with )1,(ˆ 1 −− kqC  corresponds to the estimated polynomial )( 1−qC  at the discrete-
time 1−k . 

We can write the filtered observation vector )(kϕ  as follows:  

)1,(ˆ
)()( 1 −

=
− kqC

kk ψϕ


 (39) 

We have studied the convergence conditions of the RAML parametric estimation 
algorithm (36) by using the ordinary differential equation approach. We can show 
that: if the vectors )0(θ̂  and )(kψ  are bounded, the adaptation gain matrix )(kP  is 
decreasing, the input )(ku  is a persistently and sufficiently exciting signal, the noise 

)(ke  consists of a sequence of an independent random variables with zero mean and 
variance 2σ  and the following condition is satisfied: 

0
2
1

)(
)1,(ˆ

1

1
>−

−
−

−

qC
kqC  (40) 

then, the convergence of the RAML parametric estimation algorithm (36) is ensured. 
It should be stressed that the convergence condition (40) of the RAML parametric 

estimation algorithm (36) can always be satisfied (in particular if the value of the 
discrete-time k  is sufficiently large), since the parameters intervening in the 
polynomial )1,(ˆ 1 −− kqC  represent the best estimated values of the parameters 
intervening in the polynomial )( 1−qC . 
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3.4.  Techniques of the practical implementation of the developed algorithms 
The practical implementation of the developed RELS and the RAML parametric 
estimation algorithms requires their initialisation, i.e., the choice of the initial 
conditions of the estimated parameters )0(θ̂  and the adaptation gain matrix )0(P . 
However, there do not exist rigorous methods for a better choice of these initial 
conditions. Thus, we can consider, for example, the following choice: 0)0(ˆ =θ  and 

IP α=)0( , with α  a positive parameter and I  an identity matrix. 
Let us note that in the estimate procedure of the parameters intervening in the 

discrete-time Hammerstein mathematical (9), by using the developed RELS or 
RAML parametric estimation algorithm, we can have a certain redundancy of the 
parameters )(kbj , nj ,,2 = , and rβ , pr ,,1= , intervening in the parameter 
vector )(kθ , defined by (10), that must be estimated. In such a situation, we can 
choose a procedure allowing the selection of the values of these parameters, within 
the meaning of the minimization of the variance of the estimate. 

We will propose, hereafter, a procedure allowing a better selection of the values of 
the parameters )(kbj , nj ,,2 = , and rβ , pr ,,1= . However, and before 
undertaking this procedure, we can state the following remarks, which are relating to 
the estimate of the parameters intervening in the vector )(kθ , defined by (12), by 
using the RELS or the RAML parametric estimation algorithm: 
1. the estimated parameters are unbiased, since the sequence 

},,1);(),({ Mkkyku =  of the input )(ku  and the output )(ky  is not correlated 
with the noise sequence },,1);({ Mkke = ; 

2. the estimated parameters )(ˆ kai , ni ,,1= , can be directly given; 
3. a first whole of the estimated parameters )(ˆ krβ , pr ,,1= , can be directly 

given; 
4. a second whole of the parameters rβ , which is related to the parameters )(kbj , 

nj ,,2 = , cannot be directly given, since these parameters must be estimated. 
Note that we can estimate all parameters rjjr kbkf β)()( = ; 

5. the values of the parameters )(kbj , nj ,,2 = , which are related to the 
parameters rβ , pr ,,1= , cannot be directly given. However, the determination 
of its parameters can be based on the values of the estimated parameters )(ˆ kf jr . 

It is important to indicate that the parameters rjjr kbkf β)()( = , nj ,,2 = , 
pr ,,1= , which are given in the parameter vector )(kθ , as given by (12), contain 

a certain redundancy of the parameters )(kbj  and rβ . Thus, there exists a 
redundancy of the estimated parameters intervening in )(ˆ kθ , as given by (17). In 
such a situation, we must establish a performance criterion (within the meaning of 
ensuring a better quality of the estimate) in order to select the best values of these 
estimated parameters.  

Thus, we propose to determine the unknown values of the parameters )(kbj , 
nj ,,2 = , and this, while basing ourselves on the values of the estimated 
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parameters )(ˆ krβ , pr ,,1= , and )(ˆ kf jr . In this context, we can determine the 
value of the thr  parameter, which is noted )(kbjr , corresponding to the parameter 

)(kbj . The parameter )(kbjr  can be deduced from the estimated parameter )(ˆ kf jr  
and the knowledge of the estimated parameter )(ˆ krβ . Thus, we can define the 
deduced parameter )(kbjr  by be following equation: 

]1)1(  :[ ˆ
])1(  :[ ˆ)(

+−+

+−+
=

nrnk
jnrnkkbjr θ

θ  (41) 

where ]  :[ ˆ hkθ  represents the thr  component of the estimated parameter vector 
)(ˆ kθ , which is described by (17), and with pr ≤≤1  and nj ≤≤2 . 

In addition, it is advisable to mention that, so during the iterations the value of the 
component of the estimated parameter vector )(ˆ kθ  of the denominator of the 
equation (41) is cancelled (i.e., 0]1)1( :[ ˆ =+−+ nr nkθ ), and then the bounded of 
the deduced parameter )(kbjr  is not assured. To solve this problem, we can make a 
test on the value ]1)1( :[ ˆ +−+ nr nkθ , and this, with each step of the discrete-time 
k , by proposing an appropriate solution allowing to exclude the situation where we 
can have: 0]1)1( :[ ˆ =+−+ nr nkθ . In such a situation, and as example, we can 
choose the following solution: if we will have 0]1)1( :[ ˆ =+−+ nr nkθ , then we 
take: 02.0]1)1( :[ ˆ =+−+ nr nkθ . 

Let us add that the parameter )(kbj  is r  time in the estimated parameter vector 
)(ˆ kθ , as given by (17). It follows that it is possible to determine this parameter 
)(kbj  from 1=r , or ,,2=r  or pr = . In this case, we must retain a value of r  

for which the good value of the parameter )(kbj  is better. Moreover, we can retain 
the parameter )(m kbj  corresponding to the good value of the parameter )(kbj , 
which represents the statistical average value of the deduced parameters )(kbjr , 

pr ,,1= . Thus, we can write the following expression: 

∑
= +−+

+−+
=

p

r
j nrnk

jnrnk
p

kb
1

m ]1)1(  :[ ˆ
])1(  :[ ˆ1)(

θ
θ  (42) 

Let us note that the parameter rβ , pr ≤≤1 , which is related to the parameters 
)(,),(2 kbkb n , is j  time intervening in the parameter vector )(kθ , as defined by 

(10), that must be estimated. Thus, the determination of good value of the parameter 
rβ  can be made from 2=j , or ,,3=j  or nj = . In this case, we obtain a whole 

of values of the parameter rβ , from which we must retain the value that makes it 
possible to have the best quality of the estimate. The calculation of the good 
parameter rβ  is based on the knowledge of the statistical average value )(m kbj , 
which corresponds to the good value of the parameter )(kbj , such that: 

)(
])1(  :[ ˆ

m kb
jnrnk

j
r

+−+
=
θβ  (43) 
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We must fix a performance criterion allowing selecting the best values of the 
parameters rβ , pr ,,1= , which can be related or not to the parameters )(kbj , 

nj ,,2 = . 
It should be stressed that, in a general case of the discrete-time Hammerstein 

mathematical model (9), where the parameters )(kai  and )(kbj  are given, such as: 
Ani ,,1=  and Bnj ,,2= , with AB nn ≤ , then the value of the thr  deduced 

parameter )(kbjr  can be given by using the following equation: 

]1)1(  :[ ˆ
])1(  :[ ˆ)(

+−+
+−+

=
BA

BA
jr nrnk

jnrnkkb
θ
θ  (44) 

with pr ≤≤1  and Bnj ≤≤2 . 

4.  Simulation results 
This section is devoted to the parametric estimation of a nonlinear stochastic system 
being able to be described by the discrete-time Hammerstein mathematical model, 
where the dynamic linear and the static nonlinear blocks are defined by, 
respectively: 

)1()(           
)2()()1()2()()1()()(

1

221

−++
−+−+−−−−=

kecke
khkbkhkykakykaky

 (45) 

and 

)()()( 2
21 kukukh ββ +=  (46) 

The output )(ky  of the considered nonlinear stochastic system can be described 
by: 

)1()()2()()1(           

)2()()1()2()()1()()(

1
2

22
2

2

12121

−++−+−+

−+−+−−−−=

keckekukbku

kukbkukykakykaky

ββ

ββ
 (47) 

which can be rewritten in the following compact form? 

)()()()( kekkky T += ψθ  (48) 

where the parameter vector )(kθ  and the observation vector )(kψ  are defined by: 

],)(,,)(,),(),([)( 122212121 ckbkbkakakT ββββθ =  (49) 

and 

)]1(),2(),1(),2(),1(),2(),1([)( 22 −−−−−−−−−= kekukukukukykykTψ  (50) 

We can write the parameter vector )(kθ , as given by (49), by:  

]),(,),(,),(),([)( 122221121 ckfkfkakakT ββθ =  (51) 

where the parameters )(21 kf  and )(22 kf  are given by: 1221 )()( βkbkf = , 
2222 )()( βkbkf = .  
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We propose to estimate the parameter vector )(kθ , as defined by (51) by using 
the RELS (19) and the RAML (36) parametric estimation algorithms. The relative 
data of the implementation (in numerical simulation) of these algorithms are given 
as follows: 
1. the values of the parameters intervening in the mathematical model (47) are 

chosen, such as: 
)3sin(0300.09200.0)(1 kka +−= , )3cos(0200.04000.0)(2 kka += , 

)2sin(0300.03600.0)(2 kkb += , 3000.01 =β , 2400.02 =β , 3000.01 −=c ; 
2. the input )(ku  applied to the considered nonlinear stochastic system is a pseudo-

random binary sequence with level ]2.1,2.1[ −+  and length 1023; 
3. the noise )(ke  acting on the considered system consists of a sequence of 

independent random variables with zero mean and variance 0100.02 =σ ; 
4. the initial conditions of the RELS and the RAML parametric estimation 

algorithms are chosen, such as: 0)0(ˆ =θ , IP 1000)0( = , with I  the identity 
matrix; 

5. the variable forgetting factor )(kλ  being chosen, such as: kk ∀= ,9800.0)(λ ; 
6. the number of the measurements M  being chosen, such as: 600,,1=M . 

In the numerical simulations, the estimated parameter vector )(ˆ kθ  is defined by: 

)](ˆ),(ˆ),(ˆ),(ˆ),(ˆ),(ˆ),(ˆ[)(ˆ
122221121 kckfkkfkkakakT ββθ =  (52) 

Let us notice that the determination of the parameter )(2 kb , which is related to the 
two parameters 1β  and 2β  is twice in this estimated parameter vector )(ˆ kθ . We 
will note by )(21 kb  the corresponding parameter of )(2 kb , which is deduced from 
the estimated parameters )(1̂ kβ  and )(2̂1 kf . In the same way, we will note by 

)(22 kb  the corresponding parameter of )(2 kb , which is deduced from the estimated 
parameters )(ˆ

2 kβ  and )(2̂2 kf . We remark that these two deduced parameters 
)(21 kb  and )(22 kb  are related on the fourth and the sixth components of the 

estimated parameter vector )(ˆ kθ , as given by (52). 
We define the estimation error )(

2
kbδ  of the parameter )(2 kb  by: 

)()()( m222
kbkbkb −=δ  (53) 

where )(m2 kb  represents the average of the two deduced parameters )(21 kb  and 
)(22 kb , i.e., .2/))()(()( 2221m2 kbkbkb +=  

To evaluate the computation quality of the parameter )(2 kb , we propose to 
calculate the variance of the estimation error )(

2
kbδ . In this case, we can retain a 

performance criterion, which relates to the value of the variance of the error )(
2

kbδ , 
in order to validate the calculated value of the parameter )(2 kb . 

The validation of the global quality of the estimate of the parameters intervening 
in the discrete-time Hammestein mathematical model (47), by using the developed 
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RELS and the RAML algorithms, can be made by considering the following 
parametric distance )(kd : 
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 (54) 

Two numerical simulations are realised to estimate the parameters intervening in 
the discrete-time Hammestein mathematical model (47). In the first numerical 
simulation, the RELS parametric estimation (19) is used, where a party of the 
simulation results is given hereafter. Thus, the evolution curves of the estimated 
parameters )(ˆ1 ka , )(ˆ2 ka , )(1̂ kβ  and )(ˆ

2 kβ  are given in Figure 4. We illustrate by 
the Figure 5 the evolution curves of the estimated parameters )(2̂1 kf , )(2̂2 kf  and 

)(1̂ kc , and the parametric distance )(kd . The evolution curves of the deduced 
parameters )(21 kb  and )(22 kb , their average value )(m2 kb  and the estimation error 

)(
2

kbδ  are shown in Figure 6. 
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Figure 4. Curves of the estimated parameters )(ˆ1 ka , )(ˆ2 ka , )(1̂ kβ  and )(ˆ
2 kβ . 
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Figure 5. Curves of the estimated parameters )(2̂1 kf , )(2̂2 kf  
and )(1̂ kc , and the parametric distance )(kd . 

Figure 6. Curves of the deduced parameters )(21 kb  and )(22 kb , their 
average value )(m2 kb  and the estimation error )(

2
ˆ kbδ  of )(2 kb . 
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By examining the evolution curves of the different variables, which are 
represented by Figures. 4, 5 and 6, we can affirm that the quality of the estimate of 
the parameters intervening in the discrete-time Hammestein mathematical model 
(47) is good. In this direction, we notice that the parametric distance )(kd  decrease 
(on statistical average) towards a low value. 

In the second numerical simulation, the RAML parametric estimation algorithm 
(36) is used. The obtained simulation results (no reported here) concerning the 
evolution curves of the same variables that are considered in the first simulation 
have shown the good quality of the estimate of the different parameters intervening 
in the discrete-time Hammestein mathematical model (47). 

Nothing that the convergence speed of the estimated parameters )(ˆ kci , ni ,,1=  
is relatively slow that the other estimated parameters. This result is confirmed in 
several numerical simulations (non reported here) concerning the parametric 
estimation of nonlinear stochastic systems described by the discrete-time 
Hammerstein mathematical model, as given by (9), where the convergence speed of 
the estimated parameters )(ˆ kci , ni ,,1=  is always slow that the other estimated 
parameters. Let us add that, if the sequence noise )(ke  does not have a Gaussian 
density probability, then the global quality of the estimate intervening of this 
discrete-time Hammerstein mathematical model is better for the RELS algorithm 
than for the RAML algorithm. 

For the two considered numerical simulations, we presents in Table 1 the values of 
the statistical averages 

1ˆ
ma , 

2ˆma , 
1

ˆm
β

, 
2

ˆm
β

, 
12

ˆˆm
βb

, 
22

ˆˆm
βb

 , 
1̂

mc , 
12

ˆm
b

 and 

22
ˆm
b

of the estimated parameters )(ˆ1 ka , )(ˆ2 ka , )(1 kβ , )(2 kβ , )(ˆ)(ˆ
12 kkb β , 

)(ˆ)(ˆ
22 kkb β  and )(1̂ kc . Also, we presents in Table 2 the values of the statistical 

averages 
21

mb , 
22

mb , dm  and εm  of the deducted parameters )(21 kb  and )(22 kb , 
the parametric distance )(kd  and the a priori prediction error )(kε , respectively, 
and the value of the variance εσ 2  of this prediction error. The computation of these 
different values is made for 600,,551=k . 

A comparison of the RELS and the RAML parametric estimation algorithms, 
which are used in the two numerical simulations, with respect to computation effort, 
convergence and computation time of each discrete-time k  is given in Table 3. 
They were programmed on a Pentium ®M process computer. 

Table 1. Statistical averages 
1ˆ

ma , 
2ˆma , 

1
ˆm
β

, 
2

ˆm
β

, 
21

ˆm f , 
22

ˆm f  and 
1̂

mc  of the 
estimated parameters )(ˆ1 ka , )(ˆ2 ka , )(1 kβ , )(2 kβ , )(2̂1 kf , )(2̂2 kf  and )(1̂ kc . 

Algorithm 1ˆma  
2ˆma  

1
ˆm
β

 
2

ˆmβ  
21

ˆm f  
22

ˆm f  
1̂

mc  

RELS −0.9216 0.4050 0.3000 0.2528 0.1123 0.0907 −0.3231 
RAML −0.9204 0.4064 0.3002 0.2426 0.1096 0.0884 −0.3152 
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Table 2. Statistical averages 
21

mb , 
22

mb , dm  and εm  of the deducted parameters 
)(21 kb  and )(22 kb , the parametric distance )(kd  and the a priori prediction error 
)(kε , respectively, and the value of the variance εσ 2  of this prediction error. 

Algorithm 
21

mb  
22

mb  dm  εm  εσ 2  

RELS 0.3743 0.3588 0.2566 0.0078 0.0154 

RAML 0.3653 0.3644 0.2240 0.0053 0.0122 

Table 3. Comparison of the RELS and the RAML parametric estimation algorithms. 

Algorithm Computation 
effort 

Convergence Computation time at each 
discrete-time k  

RELS small medium sec.004e8323.1 −  

RAML larger than RELS more reliable than 
RELS 

sec004e9868.1 − . 

 
It is important to note than globally, the convergence time of the recursive 

parametric estimation algorithms depend on the choice of the values on the initial 
conditions )0(θ̂  and )0(P . Indeed, if the initial condition of the estimated parameter 
vector )0(θ̂  is chosen near to the true parameter vector )(kθ  and the value of the 
initial condition of the adaptation gain matrix is small (e.g., IP =)0( ), then the 
estimated parameter vector )(ˆ kθ  converge rapidly to the parameter vector )(kθ . 

Let us recall that the a priori prediction error )(kε  corresponds to the best 
estimate of the noise )(ke , which is not measurable. Thus, the computed value of 
the variance εσ 2  of this prediction error )(kε , as given in Table 2, is very close to 
the variance of the considered noise )(ke . For example, the difference between 
these two variances being equal to 0.0054, by using the RELS parametric estimation 
algorithm (19). 

In the same way, we notice that the differences between the values of the true 
parameters of the considered nonlinear stochastic system and the values of the 
statistical averages of their estimated are weak. Let us add that the computed value 
of the variance of the estimation error )(

2
kbδ  of the parameter )(2 kb , by using the 

RELS parametric estimation algorithm (19), is equal to 0.0056. The value of this 
variance being very weak; this shows the good quality of estimate of the parameter 

)(2 kb . 
Consequently, the obtained simulation results show well the performances which 

can ensure the developed RELS and RAML parametric estimation algorithms. 
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5.  Conclusion 
In this paper, the parametric estimation problem of nonlinear stochastic systems 
described by the discrete-time Hammerstein mathematical model is studied. We 
have considered the case of the discrete-time Hammerstein mathematical model, 
where the static nonlinear block is given by a nonlinear function and the dynamic 
linear block is described by the ARMAX mathematical model, single-input single-
output, with unknown slowly time-varying parameters. 

Two recursive parametric estimation methods are studied and compared in order 
to estimate the parameters intervening in the considered discrete-time Hammerstein 
mathematical model. It is about the recursive extended least squares method and the 
recursive approximated maximum likelihood method. The parametric estimation 
algorithms, which correspond, to these methods are developed on the basis of the 
prediction error method. The convergence conditions and the techniques of the 
practical implementation of these algorithms are given. 

Numerical simulations have been treated in order to illustrate the performances 
and the effectiveness of the proposed parametric estimation algorithms. 
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